Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989235096> ?p ?o ?g. }
- W2989235096 endingPage "2340" @default.
- W2989235096 startingPage "2340" @default.
- W2989235096 abstract "Nitrogen (N) accounts for more than 80% of the total mineral nutrients absorbed by plants and it is the most widely limiting element for crop production, particularly under water deficit conditions. For a comprehensive understanding of sunflower Helianthus annuus N uptake under deficit irrigation conditions, experimental and numerical simulation studies were conducted for full (100% ETC) and deficit (65% ETC) irrigation practices under the semi-arid conditions of the Imperial Valley, California, USA. Plants were established with overhead sprinkler irrigation before transitioning to subsurface drip irrigation (SDI). Based on pre-plant soil N testing, 39 kg ha−1 of N and 78 kg ha−1 of P were applied as a pre-plant dry fertilizer in the form of monoammonium phosphate (MAP) and an additional application of 33 kg ha−1 of N from urea ammonium nitrate (UAN-32) liquid fertilizer was made during the growing season. Soil samples at 15-cm depth increments to 1.2 m (8 layers, 15 cm each) were collected prior to planting and at three additional time points from two locations each in the full and deficit irrigation treatments. We used HYDRUS/2D for the simulation in this study and the model was calibrated for the soil moisture parameters (θs and θr), the rate constant factors of nitrification (the sensitive parameter) in the liquid and solid states (μw,3, and μs,3). The HYDRUS model predicted cumulative root water uptake fluxes of 533 mm and 337 mm for the 100% ETC and 65% ETC, respectively. The simulated cumulative drainage depths were 23.7 mm and 20.4 mm for the 100% ETC and 65% ETC which represented only 4% and 5% of the applied irrigation water, respectively. The soil wetting profile after SDI irrigation was mostly around emitters for the last four SDI irrigation events, while the maximum values of soil moisture in the top 30 cm of the soil profile were 0.262 cm3 cm−3 and 0.129 cm3 cm−3 for 100% ETC and 65% ETC, respectively. The 16.5 kg ha−1 (NH2)2CO (50% of the total N) that was applied during the growing season was completely hydrolyzed to NH4+ within 7 days of application, while 4.36 mg cm−1 cumulative decay was achieved by the end of the 98-day growing season. We found that 86% of NH4+ (74.25 mg cm−1) was nitrified to NO3− while 14% remained in the top 50 cm of the soil profile. The denitrification and free drainage of NO3− were similar for 100% ETC and 65% ETC, and the maximum nitrate was drained during the sprinkler irrigation period. By the end of the growing season, 30.8 mg cm−1 of nitrate was denitrified to N2 and the reduction of nitrate plant uptake was 17.1% for the deficit irrigation section as compared to the fully irrigated side (19.44 mg cm−1 vs. 16.12 mg cm−1). This reduction in N uptake due to deficit irrigation on sunflower could help farmers conserve resources by reducing the amount of fertilizer required if deficit irrigation practices are implemented due to the limited availability of irrigation water." @default.
- W2989235096 created "2019-11-22" @default.
- W2989235096 creator A5002748007 @default.
- W2989235096 creator A5019287324 @default.
- W2989235096 creator A5083405157 @default.
- W2989235096 date "2019-11-08" @default.
- W2989235096 modified "2023-10-17" @default.
- W2989235096 title "Effect of Deficit Irrigation on Nitrogen Uptake of Sunflower in the Low Desert Region of California" @default.
- W2989235096 cites W1963881190 @default.
- W2989235096 cites W1965769826 @default.
- W2989235096 cites W1972130575 @default.
- W2989235096 cites W1972603557 @default.
- W2989235096 cites W1977238148 @default.
- W2989235096 cites W1980539347 @default.
- W2989235096 cites W1983652883 @default.
- W2989235096 cites W1987047334 @default.
- W2989235096 cites W2004793737 @default.
- W2989235096 cites W2009942199 @default.
- W2989235096 cites W2011695084 @default.
- W2989235096 cites W2014427779 @default.
- W2989235096 cites W2018757639 @default.
- W2989235096 cites W2019799612 @default.
- W2989235096 cites W2030485189 @default.
- W2989235096 cites W2033350973 @default.
- W2989235096 cites W2034373477 @default.
- W2989235096 cites W2037571802 @default.
- W2989235096 cites W2049940672 @default.
- W2989235096 cites W2064090014 @default.
- W2989235096 cites W2065733912 @default.
- W2989235096 cites W2080700725 @default.
- W2989235096 cites W2095171571 @default.
- W2989235096 cites W2096392765 @default.
- W2989235096 cites W2098432852 @default.
- W2989235096 cites W2102492473 @default.
- W2989235096 cites W2102630498 @default.
- W2989235096 cites W2146323422 @default.
- W2989235096 cites W2148126824 @default.
- W2989235096 cites W2149121549 @default.
- W2989235096 cites W2195494815 @default.
- W2989235096 cites W2223961283 @default.
- W2989235096 cites W2466913836 @default.
- W2989235096 cites W2511427721 @default.
- W2989235096 cites W2548086545 @default.
- W2989235096 cites W2560908441 @default.
- W2989235096 cites W2586579177 @default.
- W2989235096 cites W2589264406 @default.
- W2989235096 cites W2610670727 @default.
- W2989235096 cites W2785663288 @default.
- W2989235096 cites W2921501262 @default.
- W2989235096 cites W2961607540 @default.
- W2989235096 cites W411036628 @default.
- W2989235096 cites W59484141 @default.
- W2989235096 doi "https://doi.org/10.3390/w11112340" @default.
- W2989235096 hasPublicationYear "2019" @default.
- W2989235096 type Work @default.
- W2989235096 sameAs 2989235096 @default.
- W2989235096 citedByCount "10" @default.
- W2989235096 countsByYear W29892350962020 @default.
- W2989235096 countsByYear W29892350962021 @default.
- W2989235096 countsByYear W29892350962022 @default.
- W2989235096 countsByYear W29892350962023 @default.
- W2989235096 crossrefType "journal-article" @default.
- W2989235096 hasAuthorship W2989235096A5002748007 @default.
- W2989235096 hasAuthorship W2989235096A5019287324 @default.
- W2989235096 hasAuthorship W2989235096A5083405157 @default.
- W2989235096 hasBestOaLocation W29892350961 @default.
- W2989235096 hasConcept C112077630 @default.
- W2989235096 hasConcept C127313418 @default.
- W2989235096 hasConcept C137660486 @default.
- W2989235096 hasConcept C142796444 @default.
- W2989235096 hasConcept C159390177 @default.
- W2989235096 hasConcept C159750122 @default.
- W2989235096 hasConcept C168741863 @default.
- W2989235096 hasConcept C178790620 @default.
- W2989235096 hasConcept C185592680 @default.
- W2989235096 hasConcept C187320778 @default.
- W2989235096 hasConcept C195092306 @default.
- W2989235096 hasConcept C24939127 @default.
- W2989235096 hasConcept C2777589951 @default.
- W2989235096 hasConcept C2780560099 @default.
- W2989235096 hasConcept C39432304 @default.
- W2989235096 hasConcept C6557445 @default.
- W2989235096 hasConcept C76886044 @default.
- W2989235096 hasConcept C86803240 @default.
- W2989235096 hasConcept C88862950 @default.
- W2989235096 hasConceptScore W2989235096C112077630 @default.
- W2989235096 hasConceptScore W2989235096C127313418 @default.
- W2989235096 hasConceptScore W2989235096C137660486 @default.
- W2989235096 hasConceptScore W2989235096C142796444 @default.
- W2989235096 hasConceptScore W2989235096C159390177 @default.
- W2989235096 hasConceptScore W2989235096C159750122 @default.
- W2989235096 hasConceptScore W2989235096C168741863 @default.
- W2989235096 hasConceptScore W2989235096C178790620 @default.
- W2989235096 hasConceptScore W2989235096C185592680 @default.
- W2989235096 hasConceptScore W2989235096C187320778 @default.
- W2989235096 hasConceptScore W2989235096C195092306 @default.
- W2989235096 hasConceptScore W2989235096C24939127 @default.
- W2989235096 hasConceptScore W2989235096C2777589951 @default.