Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989248839> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2989248839 abstract "Background: The interest in generating synthetic computed tomography (CT) images from magnetic resonance (MR) images has been increasing over the past years due to advances in MR guidance for radiotherapy. A variety of methods for synthetic CT creation have been developed, from simple bulk density assignment to complex machine learning algorithms.Material and methods: In this study, we present a general method to determine simplistic synthetic CTs and evaluate them according to their dosimetric accuracy. It separates the requirements on the MR image and the associated calculation effort to generate a synthetic CT. To evaluate the significance of the dosimetric accuracy under realistic conditions, clinically common uncertainties including position shifts and Hounsfield lookup table (HLUT) errors were simulated. To illustrate our approach, we first translated CT images from a test set of six pelvic cancer patients to relative electron density (ED) via a clinical HLUT. For each patient, seven simplified ED images (simED) were generated at different levels of complexity, ranging from one to four tissue classes. Then, dose distributions optimised on the reference ED image and the simEDs were compared to each other in terms of gamma pass rates (2 mm/2% criteria) and dose volume metrics.Results: For our test set, best results were obtained for simEDs with four tissue classes representing fat, soft tissue, air, and bone. For this simED, gamma pass rates of 99.95% (range: 99.72-100%) were achieved. The decrease in accuracy from ED simplification was smaller in this case than the influence of the uncertainty scenarios on the reference image, both for gamma pass rates and dose volume metrics.Conclusions: The presented workflow helps to determine the required complexity of synthetic CTs with respect to their dosimetric accuracy. The investigated cases showed potential simplifications, based on which the synthetic CT generation could be faster and more reproducible." @default.
- W2989248839 created "2019-11-22" @default.
- W2989248839 creator A5041376065 @default.
- W2989248839 creator A5061499646 @default.
- W2989248839 creator A5061995639 @default.
- W2989248839 creator A5062300903 @default.
- W2989248839 creator A5080458949 @default.
- W2989248839 date "2019-11-07" @default.
- W2989248839 modified "2023-10-14" @default.
- W2989248839 title "Towards a generalised development of synthetic CT images and assessment of their dosimetric accuracy" @default.
- W2989248839 cites W1963072903 @default.
- W2989248839 cites W1967121735 @default.
- W2989248839 cites W1982095138 @default.
- W2989248839 cites W1994672425 @default.
- W2989248839 cites W2003059727 @default.
- W2989248839 cites W2021177063 @default.
- W2989248839 cites W2046701188 @default.
- W2989248839 cites W2065992941 @default.
- W2989248839 cites W2070935120 @default.
- W2989248839 cites W2086284908 @default.
- W2989248839 cites W2087726204 @default.
- W2989248839 cites W2096305085 @default.
- W2989248839 cites W2098867405 @default.
- W2989248839 cites W2118758783 @default.
- W2989248839 cites W2140866726 @default.
- W2989248839 cites W2144421744 @default.
- W2989248839 cites W2167343814 @default.
- W2989248839 cites W2561999579 @default.
- W2989248839 cites W2563414858 @default.
- W2989248839 cites W2581800036 @default.
- W2989248839 cites W2597280008 @default.
- W2989248839 cites W2604380817 @default.
- W2989248839 cites W2626316238 @default.
- W2989248839 cites W2771678676 @default.
- W2989248839 cites W2789542450 @default.
- W2989248839 cites W2790332301 @default.
- W2989248839 cites W2793185315 @default.
- W2989248839 cites W2808312419 @default.
- W2989248839 cites W3101123465 @default.
- W2989248839 doi "https://doi.org/10.1080/0284186x.2019.1684558" @default.
- W2989248839 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31694437" @default.
- W2989248839 hasPublicationYear "2019" @default.
- W2989248839 type Work @default.
- W2989248839 sameAs 2989248839 @default.
- W2989248839 citedByCount "2" @default.
- W2989248839 countsByYear W29892488392020 @default.
- W2989248839 countsByYear W29892488392022 @default.
- W2989248839 crossrefType "journal-article" @default.
- W2989248839 hasAuthorship W2989248839A5041376065 @default.
- W2989248839 hasAuthorship W2989248839A5061499646 @default.
- W2989248839 hasAuthorship W2989248839A5061995639 @default.
- W2989248839 hasAuthorship W2989248839A5062300903 @default.
- W2989248839 hasAuthorship W2989248839A5080458949 @default.
- W2989248839 hasBestOaLocation W29892488391 @default.
- W2989248839 hasConcept C126838900 @default.
- W2989248839 hasConcept C19527891 @default.
- W2989248839 hasConcept C2989005 @default.
- W2989248839 hasConcept C71924100 @default.
- W2989248839 hasConceptScore W2989248839C126838900 @default.
- W2989248839 hasConceptScore W2989248839C19527891 @default.
- W2989248839 hasConceptScore W2989248839C2989005 @default.
- W2989248839 hasConceptScore W2989248839C71924100 @default.
- W2989248839 hasLocation W29892488391 @default.
- W2989248839 hasLocation W29892488392 @default.
- W2989248839 hasOpenAccess W2989248839 @default.
- W2989248839 hasPrimaryLocation W29892488391 @default.
- W2989248839 hasRelatedWork W1969147819 @default.
- W2989248839 hasRelatedWork W1970257867 @default.
- W2989248839 hasRelatedWork W2002020930 @default.
- W2989248839 hasRelatedWork W2014710606 @default.
- W2989248839 hasRelatedWork W2066429881 @default.
- W2989248839 hasRelatedWork W2132870022 @default.
- W2989248839 hasRelatedWork W2408133128 @default.
- W2989248839 hasRelatedWork W2494736182 @default.
- W2989248839 hasRelatedWork W3194823995 @default.
- W2989248839 hasRelatedWork W4220761503 @default.
- W2989248839 isParatext "false" @default.
- W2989248839 isRetracted "false" @default.
- W2989248839 magId "2989248839" @default.
- W2989248839 workType "article" @default.