Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989303910> ?p ?o ?g. }
- W2989303910 endingPage "323" @default.
- W2989303910 startingPage "291" @default.
- W2989303910 abstract "The electrocardiogram (ECG) is a biomedical signal that is widely used to monitor the heart and diagnose cardiac problems. Depending on the clinical need, the ECG is recorded with one or multiple leads (or channels) from different body locations. The signals from different ECG leads represent the cardiac activity in different spatial directions and are thus complementary to each other. In traditional methods, the ECG signal is represented as a vector or a matrix and processed to analyze temporal information. When multiple leads are present, most methods process each lead individually and combine decisions from all leads in a later stage. While this approach is popular, it fails to exploit the structural information captured by the different leads. Recently, there is a trend towards the use of tensor-based methods in biomedical signal processing. These methods represent the signals by tensors, which are higher-order generalizations of vectors and matrices that allow the analysis of multiple modes simultaneously. In the past years, tensor decomposition methods have been applied to ECG signals to solve different clinical challenges. This chapter discusses the power of different tensor decompositions with a focus on typical ECG problems that can be solved using tensors." @default.
- W2989303910 created "2019-11-22" @default.
- W2989303910 creator A5009006026 @default.
- W2989303910 creator A5014237811 @default.
- W2989303910 creator A5047056773 @default.
- W2989303910 creator A5049055621 @default.
- W2989303910 creator A5073324709 @default.
- W2989303910 date "2019-11-13" @default.
- W2989303910 modified "2023-09-23" @default.
- W2989303910 title "The Power of Tensor-Based Approaches in Cardiac Applications" @default.
- W2989303910 cites W1538092215 @default.
- W2989303910 cites W1542955669 @default.
- W2989303910 cites W1961902029 @default.
- W2989303910 cites W1964121443 @default.
- W2989303910 cites W1969359662 @default.
- W2989303910 cites W1970309866 @default.
- W2989303910 cites W1972003923 @default.
- W2989303910 cites W1982365250 @default.
- W2989303910 cites W1984595010 @default.
- W2989303910 cites W1992556963 @default.
- W2989303910 cites W1992888140 @default.
- W2989303910 cites W1994219736 @default.
- W2989303910 cites W2011775600 @default.
- W2989303910 cites W2013157031 @default.
- W2989303910 cites W2013912476 @default.
- W2989303910 cites W2018067627 @default.
- W2989303910 cites W2019937342 @default.
- W2989303910 cites W2022242697 @default.
- W2989303910 cites W2024165284 @default.
- W2989303910 cites W2024182011 @default.
- W2989303910 cites W2036822821 @default.
- W2989303910 cites W2038920431 @default.
- W2989303910 cites W2041110545 @default.
- W2989303910 cites W2047181473 @default.
- W2989303910 cites W2070013413 @default.
- W2989303910 cites W2076214866 @default.
- W2989303910 cites W2081231690 @default.
- W2989303910 cites W2092405569 @default.
- W2989303910 cites W2097730779 @default.
- W2989303910 cites W2106221905 @default.
- W2989303910 cites W2119412403 @default.
- W2989303910 cites W2125829898 @default.
- W2989303910 cites W2135202250 @default.
- W2989303910 cites W2136002544 @default.
- W2989303910 cites W2140158444 @default.
- W2989303910 cites W2141200867 @default.
- W2989303910 cites W2143885292 @default.
- W2989303910 cites W2144567173 @default.
- W2989303910 cites W2145162005 @default.
- W2989303910 cites W2147705379 @default.
- W2989303910 cites W2152502128 @default.
- W2989303910 cites W2153392848 @default.
- W2989303910 cites W2154624311 @default.
- W2989303910 cites W2155321485 @default.
- W2989303910 cites W2162538606 @default.
- W2989303910 cites W2162800060 @default.
- W2989303910 cites W2164303721 @default.
- W2989303910 cites W2164866750 @default.
- W2989303910 cites W2167388003 @default.
- W2989303910 cites W2182794916 @default.
- W2989303910 cites W2195165862 @default.
- W2989303910 cites W2196679066 @default.
- W2989303910 cites W2244022680 @default.
- W2989303910 cites W2286589534 @default.
- W2989303910 cites W2289218965 @default.
- W2989303910 cites W2296657550 @default.
- W2989303910 cites W2330234220 @default.
- W2989303910 cites W2338760177 @default.
- W2989303910 cites W2467918280 @default.
- W2989303910 cites W2469230926 @default.
- W2989303910 cites W2495557304 @default.
- W2989303910 cites W2531542831 @default.
- W2989303910 cites W2592422147 @default.
- W2989303910 cites W2738290065 @default.
- W2989303910 cites W2740267931 @default.
- W2989303910 cites W2763363350 @default.
- W2989303910 cites W2765350348 @default.
- W2989303910 cites W2788554800 @default.
- W2989303910 cites W2791772015 @default.
- W2989303910 cites W2792630872 @default.
- W2989303910 cites W2794808262 @default.
- W2989303910 cites W2805850711 @default.
- W2989303910 cites W2889958350 @default.
- W2989303910 cites W2896429716 @default.
- W2989303910 cites W2899473684 @default.
- W2989303910 cites W2902132336 @default.
- W2989303910 cites W2919720381 @default.
- W2989303910 cites W2964313686 @default.
- W2989303910 cites W4292856638 @default.
- W2989303910 doi "https://doi.org/10.1007/978-981-13-9097-5_13" @default.
- W2989303910 hasPublicationYear "2019" @default.
- W2989303910 type Work @default.
- W2989303910 sameAs 2989303910 @default.
- W2989303910 citedByCount "2" @default.
- W2989303910 countsByYear W29893039102020 @default.
- W2989303910 countsByYear W29893039102022 @default.
- W2989303910 crossrefType "book-chapter" @default.
- W2989303910 hasAuthorship W2989303910A5009006026 @default.