Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989322016> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2989322016 endingPage "10" @default.
- W2989322016 startingPage "1" @default.
- W2989322016 abstract "Abstract Objective The present study tested the combination of an established and a validated food-choice research method (the ‘fake food buffet’) with a new food-matching technology to automate the data collection and analysis. Design The methodology combines fake-food image recognition using deep learning and food matching and standardization based on natural language processing. The former is specific because it uses a single deep learning network to perform both the segmentation and the classification at the pixel level of the image. To assess its performance, measures based on the standard pixel accuracy and Intersection over Union were applied. Food matching firstly describes each of the recognized food items in the image and then matches the food items with their compositional data, considering both their food names and their descriptors. Results The final accuracy of the deep learning model trained on fake-food images acquired by 124 study participants and providing fifty-five food classes was 92·18 %, while the food matching was performed with a classification accuracy of 93 %. Conclusions The present findings are a step towards automating dietary assessment and food-choice research. The methodology outperforms other approaches in pixel accuracy, and since it is the first automatic solution for recognizing the images of fake foods, the results could be used as a baseline for possible future studies. As the approach enables a semi-automatic description of recognized food items (e.g. with respect to FoodEx2), these can be linked to any food composition database that applies the same classification and description system." @default.
- W2989322016 created "2019-11-22" @default.
- W2989322016 creator A5054367685 @default.
- W2989322016 creator A5076065873 @default.
- W2989322016 creator A5081938321 @default.
- W2989322016 creator A5082115266 @default.
- W2989322016 date "2018-04-06" @default.
- W2989322016 modified "2023-09-27" @default.
- W2989322016 title "Mixed deep learning and natural language processing method for fake-food image recognition and standardization to help automated dietary assessment" @default.
- W2989322016 cites W1052359661 @default.
- W2989322016 cites W1548618306 @default.
- W2989322016 cites W1995413165 @default.
- W2989322016 cites W2002817129 @default.
- W2989322016 cites W2010392031 @default.
- W2989322016 cites W2020040373 @default.
- W2989322016 cites W2076769462 @default.
- W2989322016 cites W2119251312 @default.
- W2989322016 cites W2419637650 @default.
- W2989322016 cites W2517085038 @default.
- W2989322016 cites W2531079776 @default.
- W2989322016 cites W2553192371 @default.
- W2989322016 cites W2560804113 @default.
- W2989322016 cites W2595903515 @default.
- W2989322016 cites W2618498494 @default.
- W2989322016 cites W2643943583 @default.
- W2989322016 doi "https://doi.org/10.1017/s1368980018000708" @default.
- W2989322016 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6536832" @default.
- W2989322016 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29623869" @default.
- W2989322016 hasPublicationYear "2018" @default.
- W2989322016 type Work @default.
- W2989322016 sameAs 2989322016 @default.
- W2989322016 citedByCount "28" @default.
- W2989322016 countsByYear W29893220162019 @default.
- W2989322016 countsByYear W29893220162020 @default.
- W2989322016 countsByYear W29893220162021 @default.
- W2989322016 countsByYear W29893220162022 @default.
- W2989322016 countsByYear W29893220162023 @default.
- W2989322016 crossrefType "journal-article" @default.
- W2989322016 hasAuthorship W2989322016A5054367685 @default.
- W2989322016 hasAuthorship W2989322016A5076065873 @default.
- W2989322016 hasAuthorship W2989322016A5081938321 @default.
- W2989322016 hasAuthorship W2989322016A5082115266 @default.
- W2989322016 hasBestOaLocation W29893220161 @default.
- W2989322016 hasConcept C105795698 @default.
- W2989322016 hasConcept C108583219 @default.
- W2989322016 hasConcept C111919701 @default.
- W2989322016 hasConcept C115961682 @default.
- W2989322016 hasConcept C119857082 @default.
- W2989322016 hasConcept C153180895 @default.
- W2989322016 hasConcept C154945302 @default.
- W2989322016 hasConcept C160633673 @default.
- W2989322016 hasConcept C165064840 @default.
- W2989322016 hasConcept C188087704 @default.
- W2989322016 hasConcept C205649164 @default.
- W2989322016 hasConcept C33923547 @default.
- W2989322016 hasConcept C41008148 @default.
- W2989322016 hasConcept C58640448 @default.
- W2989322016 hasConcept C64543145 @default.
- W2989322016 hasConcept C89600930 @default.
- W2989322016 hasConcept C9417928 @default.
- W2989322016 hasConceptScore W2989322016C105795698 @default.
- W2989322016 hasConceptScore W2989322016C108583219 @default.
- W2989322016 hasConceptScore W2989322016C111919701 @default.
- W2989322016 hasConceptScore W2989322016C115961682 @default.
- W2989322016 hasConceptScore W2989322016C119857082 @default.
- W2989322016 hasConceptScore W2989322016C153180895 @default.
- W2989322016 hasConceptScore W2989322016C154945302 @default.
- W2989322016 hasConceptScore W2989322016C160633673 @default.
- W2989322016 hasConceptScore W2989322016C165064840 @default.
- W2989322016 hasConceptScore W2989322016C188087704 @default.
- W2989322016 hasConceptScore W2989322016C205649164 @default.
- W2989322016 hasConceptScore W2989322016C33923547 @default.
- W2989322016 hasConceptScore W2989322016C41008148 @default.
- W2989322016 hasConceptScore W2989322016C58640448 @default.
- W2989322016 hasConceptScore W2989322016C64543145 @default.
- W2989322016 hasConceptScore W2989322016C89600930 @default.
- W2989322016 hasConceptScore W2989322016C9417928 @default.
- W2989322016 hasLocation W29893220161 @default.
- W2989322016 hasLocation W29893220162 @default.
- W2989322016 hasLocation W29893220163 @default.
- W2989322016 hasLocation W29893220164 @default.
- W2989322016 hasLocation W29893220165 @default.
- W2989322016 hasOpenAccess W2989322016 @default.
- W2989322016 hasPrimaryLocation W29893220161 @default.
- W2989322016 hasRelatedWork W2136485282 @default.
- W2989322016 hasRelatedWork W2546871836 @default.
- W2989322016 hasRelatedWork W2790662084 @default.
- W2989322016 hasRelatedWork W4223943233 @default.
- W2989322016 hasRelatedWork W4309045103 @default.
- W2989322016 hasRelatedWork W4312200629 @default.
- W2989322016 hasRelatedWork W4360585206 @default.
- W2989322016 hasRelatedWork W4364306694 @default.
- W2989322016 hasRelatedWork W4380075502 @default.
- W2989322016 hasRelatedWork W4380086463 @default.
- W2989322016 isParatext "false" @default.
- W2989322016 isRetracted "false" @default.
- W2989322016 magId "2989322016" @default.
- W2989322016 workType "article" @default.