Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989324462> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2989324462 abstract "Most of current crowd counting algorithms use Euclidean loss to narrow the gap between density map and ground-truth, which leads to the low quality of density maps. In order to alleviate the above problems, we propose a crowd counting method based on conditional generative adversarial framework, which utilizes the game between generator and discriminator to achieve high quality conversion of crowd images to density maps. Specifically, CSRNet is designed as a generator, which uses the method of dilated convolution to extract the detailed information of images under the condition of adapting the scale variation. PatchGAN is designed as a discriminator to simulate high-frequency structures to further improve the quality of density maps. Benefiting from the joint optimization of adversarial loss and L2 loss, our framework can not only accurately capture the low-frequency informations, but also better model the high-frequency informations. We tested on two challenging public datasets (ShanghaiTech, UCF_CC_50) and achieved better performance, which demonstrates the effectiveness of the proposed method." @default.
- W2989324462 created "2019-11-22" @default.
- W2989324462 creator A5020749977 @default.
- W2989324462 creator A5036952378 @default.
- W2989324462 creator A5058415589 @default.
- W2989324462 creator A5063100205 @default.
- W2989324462 date "2019-01-01" @default.
- W2989324462 modified "2023-09-25" @default.
- W2989324462 title "Crowd Counting via Conditional Generative Adversarial Networks" @default.
- W2989324462 cites W1976959044 @default.
- W2989324462 cites W1978232622 @default.
- W2989324462 cites W2045494549 @default.
- W2989324462 cites W2072232009 @default.
- W2989324462 cites W2108598243 @default.
- W2989324462 cites W2138948290 @default.
- W2989324462 cites W2155916750 @default.
- W2989324462 cites W2207893099 @default.
- W2989324462 cites W2463631526 @default.
- W2989324462 cites W2519281173 @default.
- W2989324462 cites W2520723410 @default.
- W2989324462 cites W2541389513 @default.
- W2989324462 cites W2741077351 @default.
- W2989324462 cites W2798490576 @default.
- W2989324462 cites W2798781811 @default.
- W2989324462 cites W2962793481 @default.
- W2989324462 cites W2963073614 @default.
- W2989324462 cites W2964209782 @default.
- W2989324462 doi "https://doi.org/10.1007/978-3-030-31723-2_38" @default.
- W2989324462 hasPublicationYear "2019" @default.
- W2989324462 type Work @default.
- W2989324462 sameAs 2989324462 @default.
- W2989324462 citedByCount "0" @default.
- W2989324462 crossrefType "book-chapter" @default.
- W2989324462 hasAuthorship W2989324462A5020749977 @default.
- W2989324462 hasAuthorship W2989324462A5036952378 @default.
- W2989324462 hasAuthorship W2989324462A5058415589 @default.
- W2989324462 hasAuthorship W2989324462A5063100205 @default.
- W2989324462 hasConcept C104317684 @default.
- W2989324462 hasConcept C105580179 @default.
- W2989324462 hasConcept C11413529 @default.
- W2989324462 hasConcept C121332964 @default.
- W2989324462 hasConcept C146849305 @default.
- W2989324462 hasConcept C149364088 @default.
- W2989324462 hasConcept C153180895 @default.
- W2989324462 hasConcept C154945302 @default.
- W2989324462 hasConcept C163258240 @default.
- W2989324462 hasConcept C185592680 @default.
- W2989324462 hasConcept C2779803651 @default.
- W2989324462 hasConcept C2780992000 @default.
- W2989324462 hasConcept C37736160 @default.
- W2989324462 hasConcept C39890363 @default.
- W2989324462 hasConcept C41008148 @default.
- W2989324462 hasConcept C45347329 @default.
- W2989324462 hasConcept C50644808 @default.
- W2989324462 hasConcept C55493867 @default.
- W2989324462 hasConcept C62520636 @default.
- W2989324462 hasConcept C76155785 @default.
- W2989324462 hasConcept C94915269 @default.
- W2989324462 hasConceptScore W2989324462C104317684 @default.
- W2989324462 hasConceptScore W2989324462C105580179 @default.
- W2989324462 hasConceptScore W2989324462C11413529 @default.
- W2989324462 hasConceptScore W2989324462C121332964 @default.
- W2989324462 hasConceptScore W2989324462C146849305 @default.
- W2989324462 hasConceptScore W2989324462C149364088 @default.
- W2989324462 hasConceptScore W2989324462C153180895 @default.
- W2989324462 hasConceptScore W2989324462C154945302 @default.
- W2989324462 hasConceptScore W2989324462C163258240 @default.
- W2989324462 hasConceptScore W2989324462C185592680 @default.
- W2989324462 hasConceptScore W2989324462C2779803651 @default.
- W2989324462 hasConceptScore W2989324462C2780992000 @default.
- W2989324462 hasConceptScore W2989324462C37736160 @default.
- W2989324462 hasConceptScore W2989324462C39890363 @default.
- W2989324462 hasConceptScore W2989324462C41008148 @default.
- W2989324462 hasConceptScore W2989324462C45347329 @default.
- W2989324462 hasConceptScore W2989324462C50644808 @default.
- W2989324462 hasConceptScore W2989324462C55493867 @default.
- W2989324462 hasConceptScore W2989324462C62520636 @default.
- W2989324462 hasConceptScore W2989324462C76155785 @default.
- W2989324462 hasConceptScore W2989324462C94915269 @default.
- W2989324462 hasLocation W29893244621 @default.
- W2989324462 hasOpenAccess W2989324462 @default.
- W2989324462 hasPrimaryLocation W29893244621 @default.
- W2989324462 hasRelatedWork W2735864489 @default.
- W2989324462 hasRelatedWork W2765596725 @default.
- W2989324462 hasRelatedWork W2784650115 @default.
- W2989324462 hasRelatedWork W2892141512 @default.
- W2989324462 hasRelatedWork W2942006347 @default.
- W2989324462 hasRelatedWork W2963653603 @default.
- W2989324462 hasRelatedWork W2974859913 @default.
- W2989324462 hasRelatedWork W2989324462 @default.
- W2989324462 hasRelatedWork W3043276225 @default.
- W2989324462 hasRelatedWork W4287713952 @default.
- W2989324462 isParatext "false" @default.
- W2989324462 isRetracted "false" @default.
- W2989324462 magId "2989324462" @default.
- W2989324462 workType "book-chapter" @default.