Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989335918> ?p ?o ?g. }
- W2989335918 endingPage "178" @default.
- W2989335918 startingPage "178" @default.
- W2989335918 abstract "The outcomes of hypertension refer to the death or serious complications (such as myocardial infarction or stroke) that may occur in patients with hypertension. The outcomes of hypertension are very concerning for patients and doctors, and are ideally avoided. However, there is no satisfactory method for predicting the outcomes of hypertension. Therefore, this paper proposes a prediction method for outcomes based on physical examination indicators of hypertension patients. In this work, we divide the patients' outcome prediction into two steps. The first step is to extract the key features from the patients' many physical examination indicators. The second step is to use the key features extracted from the first step to predict the patients' outcomes. To this end, we propose a model combining recursive feature elimination with a cross-validation method and classification algorithm. In the first step, we use the recursive feature elimination algorithm to rank the importance of all features, and then extract the optimal features subset using cross-validation. In the second step, we use four classification algorithms (support vector machine (SVM), C4.5 decision tree, random forest (RF), and extreme gradient boosting (XGBoost)) to accurately predict patient outcomes by using their optimal features subset. The selected model prediction performance evaluation metrics are accuracy, F1 measure, and area under receiver operating characteristic curve. The 10-fold cross-validation shows that C4.5, RF, and XGBoost can achieve very good prediction results with a small number of features, and the classifier after recursive feature elimination with cross-validation feature selection has better prediction performance. Among the four classifiers, XGBoost has the best prediction performance, and its accuracy, F1, and area under receiver operating characteristic curve (AUC) values are 94.36%, 0.875, and 0.927, respectively, using the optimal features subset. This article's prediction of hypertension outcomes contributes to the in-depth study of hypertension complications and has strong practical significance." @default.
- W2989335918 created "2019-11-22" @default.
- W2989335918 creator A5013201771 @default.
- W2989335918 creator A5023518296 @default.
- W2989335918 creator A5025115299 @default.
- W2989335918 creator A5048981351 @default.
- W2989335918 creator A5050736950 @default.
- W2989335918 creator A5067371378 @default.
- W2989335918 creator A5074117281 @default.
- W2989335918 date "2019-11-07" @default.
- W2989335918 modified "2023-10-17" @default.
- W2989335918 title "A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data" @default.
- W2989335918 cites W1485635514 @default.
- W2989335918 cites W1520812622 @default.
- W2989335918 cites W1678356000 @default.
- W2989335918 cites W1968461733 @default.
- W2989335918 cites W1986832624 @default.
- W2989335918 cites W2002290921 @default.
- W2989335918 cites W2014279450 @default.
- W2989335918 cites W2014418634 @default.
- W2989335918 cites W2059970403 @default.
- W2989335918 cites W2060947741 @default.
- W2989335918 cites W2080718748 @default.
- W2989335918 cites W2090190576 @default.
- W2989335918 cites W2092829070 @default.
- W2989335918 cites W2095365800 @default.
- W2989335918 cites W2116717490 @default.
- W2989335918 cites W2122999192 @default.
- W2989335918 cites W2123936943 @default.
- W2989335918 cites W2125283600 @default.
- W2989335918 cites W2137327222 @default.
- W2989335918 cites W2143426320 @default.
- W2989335918 cites W2152385240 @default.
- W2989335918 cites W2152761983 @default.
- W2989335918 cites W2155632266 @default.
- W2989335918 cites W2159737176 @default.
- W2989335918 cites W2332457881 @default.
- W2989335918 cites W2552693142 @default.
- W2989335918 cites W2584413035 @default.
- W2989335918 cites W2651986237 @default.
- W2989335918 cites W2768160997 @default.
- W2989335918 cites W2786814109 @default.
- W2989335918 cites W2807929272 @default.
- W2989335918 cites W2890376446 @default.
- W2989335918 cites W2901607560 @default.
- W2989335918 cites W2915815599 @default.
- W2989335918 cites W2975741493 @default.
- W2989335918 cites W2997363392 @default.
- W2989335918 cites W4235507090 @default.
- W2989335918 cites W4236137412 @default.
- W2989335918 cites W4239510810 @default.
- W2989335918 doi "https://doi.org/10.3390/diagnostics9040178" @default.
- W2989335918 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6963807" @default.
- W2989335918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31703364" @default.
- W2989335918 hasPublicationYear "2019" @default.
- W2989335918 type Work @default.
- W2989335918 sameAs 2989335918 @default.
- W2989335918 citedByCount "95" @default.
- W2989335918 countsByYear W29893359182020 @default.
- W2989335918 countsByYear W29893359182021 @default.
- W2989335918 countsByYear W29893359182022 @default.
- W2989335918 countsByYear W29893359182023 @default.
- W2989335918 crossrefType "journal-article" @default.
- W2989335918 hasAuthorship W2989335918A5013201771 @default.
- W2989335918 hasAuthorship W2989335918A5023518296 @default.
- W2989335918 hasAuthorship W2989335918A5025115299 @default.
- W2989335918 hasAuthorship W2989335918A5048981351 @default.
- W2989335918 hasAuthorship W2989335918A5050736950 @default.
- W2989335918 hasAuthorship W2989335918A5067371378 @default.
- W2989335918 hasAuthorship W2989335918A5074117281 @default.
- W2989335918 hasBestOaLocation W29893359181 @default.
- W2989335918 hasConcept C119857082 @default.
- W2989335918 hasConcept C12267149 @default.
- W2989335918 hasConcept C124101348 @default.
- W2989335918 hasConcept C148483581 @default.
- W2989335918 hasConcept C154945302 @default.
- W2989335918 hasConcept C169258074 @default.
- W2989335918 hasConcept C27181475 @default.
- W2989335918 hasConcept C41008148 @default.
- W2989335918 hasConcept C58471807 @default.
- W2989335918 hasConcept C70153297 @default.
- W2989335918 hasConcept C84525736 @default.
- W2989335918 hasConcept C95623464 @default.
- W2989335918 hasConceptScore W2989335918C119857082 @default.
- W2989335918 hasConceptScore W2989335918C12267149 @default.
- W2989335918 hasConceptScore W2989335918C124101348 @default.
- W2989335918 hasConceptScore W2989335918C148483581 @default.
- W2989335918 hasConceptScore W2989335918C154945302 @default.
- W2989335918 hasConceptScore W2989335918C169258074 @default.
- W2989335918 hasConceptScore W2989335918C27181475 @default.
- W2989335918 hasConceptScore W2989335918C41008148 @default.
- W2989335918 hasConceptScore W2989335918C58471807 @default.
- W2989335918 hasConceptScore W2989335918C70153297 @default.
- W2989335918 hasConceptScore W2989335918C84525736 @default.
- W2989335918 hasConceptScore W2989335918C95623464 @default.
- W2989335918 hasIssue "4" @default.
- W2989335918 hasLocation W29893359181 @default.
- W2989335918 hasLocation W29893359182 @default.