Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989341121> ?p ?o ?g. }
- W2989341121 endingPage "102" @default.
- W2989341121 startingPage "95" @default.
- W2989341121 abstract "Abstract Background The main cause of cancer death is lung cancer (LC) which usually presents at an advanced stage, but its early detection would increase the benefits of treatment. Blood is particularly favored in clinical research given the possibility of using it for relatively noninvasive analyses. Copy number variation (CNV) is a common genetic change in tumor genomes, and many studies have indicated that CNV‐derived cell‐free DNA (cfDNA) from plasma could be feasible as a biomarker for cancer diagnosis. Methods In this study, we determined the possibility of using chromosomal arm‐level CNV from cfDNA as a biomarker for lung cancer diagnosis in a small cohort of 40 patients and 41 healthy controls. Arm‐level CNV distributions were analyzed based on z score, and the machine‐learning algorithm Extreme Gradient Boosting (XGBoost) was applied for cancer prediction. Results The results showed that amplifications tended to emerge on chromosomes 3q, 8q, 12p, and 7q. Deletions were frequently detected on chromosomes 22q, 3p, 5q, 16q, 10q, and 15q. Upon applying a trained XGBoost classifier, specificity and sensitivity of 100% were finally achieved in the test group (12 patients and 13 healthy controls). In addition, five‐fold cross‐validation proved the stability of the model. Finally, our results suggested that the integration of four arm‐level CNVs and the concentration of cfDNA into the trained XGBoost classifier provides a potential method for detecting lung cancer. Conclusion Our results suggested that the integration of four arm‐level CNVs and the concentration from of cfDNA integrated withinto the trained XGBoost classifier could become provides a potentially method for detecting lung cancer detection. Key points Significant findings of the study : Healthy individuals have different arm‐level CNV profiles from cancer patients. Amplifications tend to emerge on chromosome 3q, 8q, 12p, 7q and deletions tend to emerge on chromosome 22q, 3p, 5q, 16q, 10q, 15q. What this study adds : CfDNA concentration, arm 10q, 3q, 8q, 3p, and 22q are key features for prediction. Trained XGBoost classifier is a potential method for lung cancer detection." @default.
- W2989341121 created "2019-11-22" @default.
- W2989341121 creator A5002874398 @default.
- W2989341121 creator A5016927477 @default.
- W2989341121 creator A5037660639 @default.
- W2989341121 creator A5039085629 @default.
- W2989341121 creator A5041105225 @default.
- W2989341121 creator A5047090233 @default.
- W2989341121 creator A5049692788 @default.
- W2989341121 creator A5065037360 @default.
- W2989341121 creator A5068334163 @default.
- W2989341121 date "2019-11-06" @default.
- W2989341121 modified "2023-10-11" @default.
- W2989341121 title "Copy number variation in plasma as a tool for lung cancer prediction using Extreme Gradient Boosting (XGBoost) classifier" @default.
- W2989341121 cites W1641137889 @default.
- W2989341121 cites W1996961433 @default.
- W2989341121 cites W2000771104 @default.
- W2989341121 cites W2008628868 @default.
- W2989341121 cites W2025667197 @default.
- W2989341121 cites W2035593347 @default.
- W2989341121 cites W2051340943 @default.
- W2989341121 cites W2079345276 @default.
- W2989341121 cites W2107751484 @default.
- W2989341121 cites W2111547563 @default.
- W2989341121 cites W2131256900 @default.
- W2989341121 cites W2153056550 @default.
- W2989341121 cites W2157852151 @default.
- W2989341121 cites W2166503226 @default.
- W2989341121 cites W2166712337 @default.
- W2989341121 cites W2252486572 @default.
- W2989341121 cites W2272984102 @default.
- W2989341121 cites W2370924594 @default.
- W2989341121 cites W2479061539 @default.
- W2989341121 cites W2508069933 @default.
- W2989341121 cites W2560306077 @default.
- W2989341121 cites W2562695979 @default.
- W2989341121 cites W2582875120 @default.
- W2989341121 cites W2617335484 @default.
- W2989341121 cites W2740569402 @default.
- W2989341121 cites W2782188584 @default.
- W2989341121 cites W2791231091 @default.
- W2989341121 cites W2797166305 @default.
- W2989341121 cites W2803358834 @default.
- W2989341121 cites W2807032201 @default.
- W2989341121 cites W2947989913 @default.
- W2989341121 cites W3102476541 @default.
- W2989341121 cites W4234236664 @default.
- W2989341121 doi "https://doi.org/10.1111/1759-7714.13204" @default.
- W2989341121 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6938748" @default.
- W2989341121 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31694073" @default.
- W2989341121 hasPublicationYear "2019" @default.
- W2989341121 type Work @default.
- W2989341121 sameAs 2989341121 @default.
- W2989341121 citedByCount "41" @default.
- W2989341121 countsByYear W29893411212020 @default.
- W2989341121 countsByYear W29893411212021 @default.
- W2989341121 countsByYear W29893411212022 @default.
- W2989341121 countsByYear W29893411212023 @default.
- W2989341121 crossrefType "journal-article" @default.
- W2989341121 hasAuthorship W2989341121A5002874398 @default.
- W2989341121 hasAuthorship W2989341121A5016927477 @default.
- W2989341121 hasAuthorship W2989341121A5037660639 @default.
- W2989341121 hasAuthorship W2989341121A5039085629 @default.
- W2989341121 hasAuthorship W2989341121A5041105225 @default.
- W2989341121 hasAuthorship W2989341121A5047090233 @default.
- W2989341121 hasAuthorship W2989341121A5049692788 @default.
- W2989341121 hasAuthorship W2989341121A5065037360 @default.
- W2989341121 hasAuthorship W2989341121A5068334163 @default.
- W2989341121 hasBestOaLocation W29893411211 @default.
- W2989341121 hasConcept C104317684 @default.
- W2989341121 hasConcept C120821319 @default.
- W2989341121 hasConcept C126322002 @default.
- W2989341121 hasConcept C141231307 @default.
- W2989341121 hasConcept C143998085 @default.
- W2989341121 hasConcept C154945302 @default.
- W2989341121 hasConcept C2776256026 @default.
- W2989341121 hasConcept C2781197716 @default.
- W2989341121 hasConcept C41008148 @default.
- W2989341121 hasConcept C54355233 @default.
- W2989341121 hasConcept C60644358 @default.
- W2989341121 hasConcept C71924100 @default.
- W2989341121 hasConcept C86803240 @default.
- W2989341121 hasConcept C95623464 @default.
- W2989341121 hasConceptScore W2989341121C104317684 @default.
- W2989341121 hasConceptScore W2989341121C120821319 @default.
- W2989341121 hasConceptScore W2989341121C126322002 @default.
- W2989341121 hasConceptScore W2989341121C141231307 @default.
- W2989341121 hasConceptScore W2989341121C143998085 @default.
- W2989341121 hasConceptScore W2989341121C154945302 @default.
- W2989341121 hasConceptScore W2989341121C2776256026 @default.
- W2989341121 hasConceptScore W2989341121C2781197716 @default.
- W2989341121 hasConceptScore W2989341121C41008148 @default.
- W2989341121 hasConceptScore W2989341121C54355233 @default.
- W2989341121 hasConceptScore W2989341121C60644358 @default.
- W2989341121 hasConceptScore W2989341121C71924100 @default.
- W2989341121 hasConceptScore W2989341121C86803240 @default.
- W2989341121 hasConceptScore W2989341121C95623464 @default.
- W2989341121 hasIssue "1" @default.