Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989392432> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2989392432 abstract "Abstract In this study, we aim to demonstrate how machine learning can empower computational models that can predict the flow rate of a given well. Given current real-time data and periodic well tests, this new method computes flow rates using data-driven model. The computational model is based on analyzing the relations and trends in historical data. Relational databases include huge amounts of data that have been accumulated throughout decades. In addition, there is a large number of incoming operational data points every second that gives a lot of insight about the current status, performance, and health of many wells. The project aims to utilize this data to predict the flow rate of a given well. A variety of well attributes serve as inputs to the computational models that find the current flow rate. Artificial Neural Networks (ANN) were used in order to build these computational models. In addition, a grid search algorithm was used to fine-tune the parameters for the ANN for every single well. Building a single unique model for every well yielded the most accurate results. Wells that are data-rich performed better than wells with insufficient data. To further enhance the accuracy of the models, models are retrained after every incoming patch of real-time data. This retraining calibrates the models to constantly represent the true well performance and predict better. In practice, Flow rate prediction is used by production engineers to analyze the performance of a given well and to accelerate the process of well test verification. One of the main challenges in building unique models for every well is fine-tuning the parameters for the artificial neural networks, which can be a computationally intensive task. Parameter fine-tuning hasn't been discussed in previous literature regarding flow rate prediction. Therefore, our unique approach addresses the individuality of every well and builds models accordingly. This high-level of customization addresses the problem of under-fitting in ANN well models." @default.
- W2989392432 created "2019-11-22" @default.
- W2989392432 creator A5021688912 @default.
- W2989392432 creator A5036125873 @default.
- W2989392432 creator A5037490136 @default.
- W2989392432 creator A5046993415 @default.
- W2989392432 date "2019-11-11" @default.
- W2989392432 modified "2023-09-26" @default.
- W2989392432 title "Utilizing Machine Learning for a Data Driven Approach to Flow Rate Prediction" @default.
- W2989392432 cites W1989381610 @default.
- W2989392432 cites W2013449087 @default.
- W2989392432 cites W2028070629 @default.
- W2989392432 cites W2049877065 @default.
- W2989392432 cites W2075873142 @default.
- W2989392432 cites W2111734760 @default.
- W2989392432 cites W2298497999 @default.
- W2989392432 cites W2406593126 @default.
- W2989392432 doi "https://doi.org/10.2118/197266-ms" @default.
- W2989392432 hasPublicationYear "2019" @default.
- W2989392432 type Work @default.
- W2989392432 sameAs 2989392432 @default.
- W2989392432 citedByCount "0" @default.
- W2989392432 crossrefType "proceedings-article" @default.
- W2989392432 hasAuthorship W2989392432A5021688912 @default.
- W2989392432 hasAuthorship W2989392432A5036125873 @default.
- W2989392432 hasAuthorship W2989392432A5037490136 @default.
- W2989392432 hasAuthorship W2989392432A5046993415 @default.
- W2989392432 hasConcept C119857082 @default.
- W2989392432 hasConcept C154945302 @default.
- W2989392432 hasConcept C41008148 @default.
- W2989392432 hasConceptScore W2989392432C119857082 @default.
- W2989392432 hasConceptScore W2989392432C154945302 @default.
- W2989392432 hasConceptScore W2989392432C41008148 @default.
- W2989392432 hasLocation W29893924321 @default.
- W2989392432 hasOpenAccess W2989392432 @default.
- W2989392432 hasPrimaryLocation W29893924321 @default.
- W2989392432 hasRelatedWork W2018887192 @default.
- W2989392432 hasRelatedWork W2185268573 @default.
- W2989392432 hasRelatedWork W2539924289 @default.
- W2989392432 hasRelatedWork W2770969945 @default.
- W2989392432 hasRelatedWork W2785412558 @default.
- W2989392432 hasRelatedWork W2803868933 @default.
- W2989392432 hasRelatedWork W2883216673 @default.
- W2989392432 hasRelatedWork W2912068910 @default.
- W2989392432 hasRelatedWork W2949984773 @default.
- W2989392432 hasRelatedWork W2979759931 @default.
- W2989392432 hasRelatedWork W2989043408 @default.
- W2989392432 hasRelatedWork W2992299135 @default.
- W2989392432 hasRelatedWork W3088011840 @default.
- W2989392432 hasRelatedWork W3113955265 @default.
- W2989392432 hasRelatedWork W3136027957 @default.
- W2989392432 hasRelatedWork W3185869614 @default.
- W2989392432 hasRelatedWork W3199965065 @default.
- W2989392432 hasRelatedWork W3208043715 @default.
- W2989392432 hasRelatedWork W3208818645 @default.
- W2989392432 hasRelatedWork W3085664749 @default.
- W2989392432 isParatext "false" @default.
- W2989392432 isRetracted "false" @default.
- W2989392432 magId "2989392432" @default.
- W2989392432 workType "article" @default.