Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989404270> ?p ?o ?g. }
- W2989404270 endingPage "107244" @default.
- W2989404270 startingPage "107244" @default.
- W2989404270 abstract "The aim of present study is to propose new superior equations and introduce novel techniques for TBM performance prediction. To this end, correlations between the Rate of Penetration (ROP) and rock mass properties are investigated using four simple regression analyses. Based on these analyses, two non-linear multivariable equations are introduced and optimized by the Imperialist Competitive Algorithm (ICA). Then, two other distinct models are examined by using the Classification and Regression Tree (CART) and Genetic Expression Programming (GEP) techniques. The aforementioned methods are applied on a dataset from the Queens Tunnel, in New-York City with complex geology conditions. It was found that the models proposed by ICA, CART and GEP techniques have determination coefficient of 0.76, 0.82 and 0.72 for training data, and 0.62, 0.69 and 0.65 for testing data, respectively. The results showed the noticeable improvement of the predictions compare to previous studies." @default.
- W2989404270 created "2019-11-22" @default.
- W2989404270 creator A5032548663 @default.
- W2989404270 creator A5049075839 @default.
- W2989404270 creator A5089882448 @default.
- W2989404270 creator A5090576569 @default.
- W2989404270 date "2020-02-01" @default.
- W2989404270 modified "2023-10-14" @default.
- W2989404270 title "Performance prediction of tunnel boring machine through developing high accuracy equations: A case study in adverse geological condition" @default.
- W2989404270 cites W1970084710 @default.
- W2989404270 cites W1977384405 @default.
- W2989404270 cites W1999931136 @default.
- W2989404270 cites W2012218190 @default.
- W2989404270 cites W2024921522 @default.
- W2989404270 cites W2031992652 @default.
- W2989404270 cites W2033011996 @default.
- W2989404270 cites W2039985772 @default.
- W2989404270 cites W2040492000 @default.
- W2989404270 cites W2046902737 @default.
- W2989404270 cites W2054224043 @default.
- W2989404270 cites W2054545697 @default.
- W2989404270 cites W2056420544 @default.
- W2989404270 cites W2056581810 @default.
- W2989404270 cites W2066794632 @default.
- W2989404270 cites W2089468765 @default.
- W2989404270 cites W2110529327 @default.
- W2989404270 cites W2121935962 @default.
- W2989404270 cites W2126730199 @default.
- W2989404270 cites W2133946734 @default.
- W2989404270 cites W2137296881 @default.
- W2989404270 cites W2152195021 @default.
- W2989404270 cites W2166186246 @default.
- W2989404270 cites W2167538629 @default.
- W2989404270 cites W2401784868 @default.
- W2989404270 cites W2528472752 @default.
- W2989404270 cites W2530936992 @default.
- W2989404270 cites W2551125611 @default.
- W2989404270 cites W2566958870 @default.
- W2989404270 cites W2568952562 @default.
- W2989404270 cites W2648578256 @default.
- W2989404270 cites W2731140830 @default.
- W2989404270 cites W2803417426 @default.
- W2989404270 cites W2938489067 @default.
- W2989404270 cites W319428505 @default.
- W2989404270 cites W4250503569 @default.
- W2989404270 cites W590269566 @default.
- W2989404270 doi "https://doi.org/10.1016/j.measurement.2019.107244" @default.
- W2989404270 hasPublicationYear "2020" @default.
- W2989404270 type Work @default.
- W2989404270 sameAs 2989404270 @default.
- W2989404270 citedByCount "16" @default.
- W2989404270 countsByYear W29894042702020 @default.
- W2989404270 countsByYear W29894042702021 @default.
- W2989404270 countsByYear W29894042702022 @default.
- W2989404270 countsByYear W29894042702023 @default.
- W2989404270 crossrefType "journal-article" @default.
- W2989404270 hasAuthorship W2989404270A5032548663 @default.
- W2989404270 hasAuthorship W2989404270A5049075839 @default.
- W2989404270 hasAuthorship W2989404270A5089882448 @default.
- W2989404270 hasAuthorship W2989404270A5090576569 @default.
- W2989404270 hasConcept C105795698 @default.
- W2989404270 hasConcept C110332635 @default.
- W2989404270 hasConcept C11413529 @default.
- W2989404270 hasConcept C117312493 @default.
- W2989404270 hasConcept C119857082 @default.
- W2989404270 hasConcept C12267149 @default.
- W2989404270 hasConcept C124101348 @default.
- W2989404270 hasConcept C127413603 @default.
- W2989404270 hasConcept C133731056 @default.
- W2989404270 hasConcept C152877465 @default.
- W2989404270 hasConcept C154945302 @default.
- W2989404270 hasConcept C2776400721 @default.
- W2989404270 hasConcept C2777275308 @default.
- W2989404270 hasConcept C33923547 @default.
- W2989404270 hasConcept C41008148 @default.
- W2989404270 hasConcept C45804977 @default.
- W2989404270 hasConcept C48921125 @default.
- W2989404270 hasConcept C78519656 @default.
- W2989404270 hasConcept C83546350 @default.
- W2989404270 hasConceptScore W2989404270C105795698 @default.
- W2989404270 hasConceptScore W2989404270C110332635 @default.
- W2989404270 hasConceptScore W2989404270C11413529 @default.
- W2989404270 hasConceptScore W2989404270C117312493 @default.
- W2989404270 hasConceptScore W2989404270C119857082 @default.
- W2989404270 hasConceptScore W2989404270C12267149 @default.
- W2989404270 hasConceptScore W2989404270C124101348 @default.
- W2989404270 hasConceptScore W2989404270C127413603 @default.
- W2989404270 hasConceptScore W2989404270C133731056 @default.
- W2989404270 hasConceptScore W2989404270C152877465 @default.
- W2989404270 hasConceptScore W2989404270C154945302 @default.
- W2989404270 hasConceptScore W2989404270C2776400721 @default.
- W2989404270 hasConceptScore W2989404270C2777275308 @default.
- W2989404270 hasConceptScore W2989404270C33923547 @default.
- W2989404270 hasConceptScore W2989404270C41008148 @default.
- W2989404270 hasConceptScore W2989404270C45804977 @default.
- W2989404270 hasConceptScore W2989404270C48921125 @default.
- W2989404270 hasConceptScore W2989404270C78519656 @default.
- W2989404270 hasConceptScore W2989404270C83546350 @default.