Matches in SemOpenAlex for { <https://semopenalex.org/work/W298940905> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W298940905 abstract "The work of this thesis is focused on the robustness of control laws for space-craft formation. Robustness in this case refers to the ability of the system to withstand persistent perturbations, and to keep some of the (stability) characteristics of the unperturbed system. Chapter 2 makes up the theoretical framework for this thesis. Analogous to the definition of practical asymptotic stability in Chaillet and Loria (2006b), we define practical exponential stability. This definition is more restrictive than its asymptotic counterpart, but has the advantage of an exponentially decaying upper bound of the solution on the considered part of the state space. Lyapunov sufficient conditions are stated, both for general systems and systems which are interconnected on a cascaded structure. Systems can naturally show a cascaded structure, as e.g. a leader follower spacecraft formation, or they can be rewritten into a cascaded structure, which is a common approach for systems with an observer and certainty equivalence controller. Furthermore, we provide a theoretical framework that fits realistic challenges related to spacecraft formation with disturbances. We show that the input-to-state property of such systems guarantees some robustness with respect to a class of signals with bounded average-energy, which encompasses the typical disturbances acting on spacecraft formations. Robustness is considered in the sense that solutions are bounded by a converging function of time, up to an offset which is somewhat proportional to the considered average energy of disturbances. The proposed approach allows for a tighter evaluation of the disturbances.in.uence, which in turns allows for the use of more parsimonious control gains. In Chapter 3 the leader-follower spacecraft formation is modeled. This type of formation is chosen because of its simplicity. It is therefore, in the authors opinion, the type of formation most likely used for real applications in the .eld of spacecraft formation control in the nearest future. Both a model for relative translation and rotation is derived. The relative translation model is derived in a general setting, where we can choose the origin of the frame of reference as center of gravity of the leader spacecraft or some other convenient point. Chapter 4 is devoted to output tracking of relative translation. The follower spacecraft control law is derived under limited knowledge of the leader spacecraft. It is required that the leader spacecraft can either broadcast its position, or the follower spacecraft are equipped with devices that can take the necessary measurements. In addition, it is assumed that the control action and disturbances acting on the leader spacecraft is upper bounded. In deriving the control laws we make use of the theory for control of robotic manipulators and ocean vehicles, as they are systems with similar properties. Output attitude tracking is treated in Chapter 5. As opposed to the translational case in Chapter 4, we derive control laws for both the leader-and the follower spacecraft, and show stability properties under bounded disturbances. In Chapter 6 we analyse stability of the controllers of a spacecraft formation with respect to a class of bounded-energy signals, using the frame-work developed in Chapter 2. Our application shows that our framework is not only useful for systems perturbed by certain disturbances, but we also show that the reference trajectory of the leader spacecraft can be seen as a disturbance from the follower spacecraft point of view. As propulsion systems of spacecraft often do not provide continuous actuation, Chapter 7 is devoted to the analysis of such systems when the actuation is quantized or pulse width modulated." @default.
- W298940905 created "2016-06-24" @default.
- W298940905 creator A5048658248 @default.
- W298940905 date "2010-01-01" @default.
- W298940905 modified "2023-09-24" @default.
- W298940905 title "Robust stability and control of spacecraft formations" @default.
- W298940905 hasPublicationYear "2010" @default.
- W298940905 type Work @default.
- W298940905 sameAs 298940905 @default.
- W298940905 citedByCount "6" @default.
- W298940905 countsByYear W2989409052013 @default.
- W298940905 countsByYear W2989409052014 @default.
- W298940905 crossrefType "dissertation" @default.
- W298940905 hasAuthorship W298940905A5048658248 @default.
- W298940905 hasConcept C104317684 @default.
- W298940905 hasConcept C119599485 @default.
- W298940905 hasConcept C121332964 @default.
- W298940905 hasConcept C127413603 @default.
- W298940905 hasConcept C134306372 @default.
- W298940905 hasConcept C146978453 @default.
- W298940905 hasConcept C154945302 @default.
- W298940905 hasConcept C158622935 @default.
- W298940905 hasConcept C167964875 @default.
- W298940905 hasConcept C17500928 @default.
- W298940905 hasConcept C185592680 @default.
- W298940905 hasConcept C2775924081 @default.
- W298940905 hasConcept C29829512 @default.
- W298940905 hasConcept C31531917 @default.
- W298940905 hasConcept C33923547 @default.
- W298940905 hasConcept C34388435 @default.
- W298940905 hasConcept C41008148 @default.
- W298940905 hasConcept C47446073 @default.
- W298940905 hasConcept C55493867 @default.
- W298940905 hasConcept C60640748 @default.
- W298940905 hasConcept C62520636 @default.
- W298940905 hasConcept C63479239 @default.
- W298940905 hasConceptScore W298940905C104317684 @default.
- W298940905 hasConceptScore W298940905C119599485 @default.
- W298940905 hasConceptScore W298940905C121332964 @default.
- W298940905 hasConceptScore W298940905C127413603 @default.
- W298940905 hasConceptScore W298940905C134306372 @default.
- W298940905 hasConceptScore W298940905C146978453 @default.
- W298940905 hasConceptScore W298940905C154945302 @default.
- W298940905 hasConceptScore W298940905C158622935 @default.
- W298940905 hasConceptScore W298940905C167964875 @default.
- W298940905 hasConceptScore W298940905C17500928 @default.
- W298940905 hasConceptScore W298940905C185592680 @default.
- W298940905 hasConceptScore W298940905C2775924081 @default.
- W298940905 hasConceptScore W298940905C29829512 @default.
- W298940905 hasConceptScore W298940905C31531917 @default.
- W298940905 hasConceptScore W298940905C33923547 @default.
- W298940905 hasConceptScore W298940905C34388435 @default.
- W298940905 hasConceptScore W298940905C41008148 @default.
- W298940905 hasConceptScore W298940905C47446073 @default.
- W298940905 hasConceptScore W298940905C55493867 @default.
- W298940905 hasConceptScore W298940905C60640748 @default.
- W298940905 hasConceptScore W298940905C62520636 @default.
- W298940905 hasConceptScore W298940905C63479239 @default.
- W298940905 hasLocation W2989409051 @default.
- W298940905 hasOpenAccess W298940905 @default.
- W298940905 hasPrimaryLocation W2989409051 @default.
- W298940905 hasRelatedWork W1524609463 @default.
- W298940905 hasRelatedWork W1529084875 @default.
- W298940905 hasRelatedWork W1568299913 @default.
- W298940905 hasRelatedWork W1581205238 @default.
- W298940905 hasRelatedWork W1581576254 @default.
- W298940905 hasRelatedWork W1965921794 @default.
- W298940905 hasRelatedWork W2007276523 @default.
- W298940905 hasRelatedWork W2022883157 @default.
- W298940905 hasRelatedWork W2083483041 @default.
- W298940905 hasRelatedWork W2084828843 @default.
- W298940905 hasRelatedWork W2117484613 @default.
- W298940905 hasRelatedWork W2148152486 @default.
- W298940905 hasRelatedWork W2162072750 @default.
- W298940905 hasRelatedWork W2168457127 @default.
- W298940905 hasRelatedWork W2205774407 @default.
- W298940905 hasRelatedWork W2794024165 @default.
- W298940905 hasRelatedWork W3185673867 @default.
- W298940905 hasRelatedWork W3199518463 @default.
- W298940905 hasRelatedWork W413726496 @default.
- W298940905 hasRelatedWork W49095562 @default.
- W298940905 isParatext "false" @default.
- W298940905 isRetracted "false" @default.
- W298940905 magId "298940905" @default.
- W298940905 workType "dissertation" @default.