Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989409993> ?p ?o ?g. }
- W2989409993 abstract "Text classification has become very serious problem for big organization to manage the large amount of online data and has been extensively applied in the tasks of Natural Language Processing (NLP). Text classification can support users to excellently manage and exploit meaningful information require to be classified into various categories for further use. In order to best classify texts, our research efforts to develop a deep learning approach which obtains superior performance in text classification than other RNNs approaches. However, the main problem in text classification is how to enhance the classification accuracy and the sparsity of the data semantics sensitivity to context often hinders the classification performance of texts. In order to overcome the weakness, in this paper we proposed unified structure to investigate the effects of word embedding and Gated Recurrent Unit (GRU) for text classification on two benchmark datasets included (Google snippets and TREC). GRU is a well-known type of recurrent neural network (RNN), which is ability of computing sequential data over its recurrent architecture. Experimentally, the semantically connected words are commonly near to each other in embedding spaces. First, words in posts are changed into vectors via word embedding technique. Then, the words sequential in sentences are fed to GRU to extract the contextual semantics between words. The experimental results showed that proposed GRU model can effectively learn the word usage in context of texts provided training data. The quantity and quality of training data significantly affected the performance. We evaluated the performance of proposed approach with traditional recurrent approaches, RNN, MV-RNN and LSTM, the proposed approach is obtained better results on two benchmark datasets in the term of accuracy and error rate." @default.
- W2989409993 created "2019-11-22" @default.
- W2989409993 creator A5011466065 @default.
- W2989409993 creator A5035774010 @default.
- W2989409993 creator A5069021835 @default.
- W2989409993 creator A5074490056 @default.
- W2989409993 date "2019-11-09" @default.
- W2989409993 modified "2023-10-16" @default.
- W2989409993 title "Efficient processing of GRU based on word embedding for text classification" @default.
- W2989409993 cites W1840435438 @default.
- W2989409993 cites W1905882502 @default.
- W2989409993 cites W1985258458 @default.
- W2989409993 cites W2077566853 @default.
- W2989409993 cites W2095705004 @default.
- W2989409993 cites W2130237711 @default.
- W2989409993 cites W2147489358 @default.
- W2989409993 cites W2171836785 @default.
- W2989409993 cites W2242874043 @default.
- W2989409993 cites W2250539671 @default.
- W2989409993 cites W2251939518 @default.
- W2989409993 cites W2252335727 @default.
- W2989409993 cites W2265846598 @default.
- W2989409993 cites W2292292019 @default.
- W2989409993 cites W2609077090 @default.
- W2989409993 cites W2773907775 @default.
- W2989409993 cites W2963921497 @default.
- W2989409993 cites W2964199361 @default.
- W2989409993 cites W71795751 @default.
- W2989409993 doi "https://doi.org/10.30630/joiv.3.4.289" @default.
- W2989409993 hasPublicationYear "2019" @default.
- W2989409993 type Work @default.
- W2989409993 sameAs 2989409993 @default.
- W2989409993 citedByCount "38" @default.
- W2989409993 countsByYear W29894099932020 @default.
- W2989409993 countsByYear W29894099932021 @default.
- W2989409993 countsByYear W29894099932022 @default.
- W2989409993 countsByYear W29894099932023 @default.
- W2989409993 crossrefType "journal-article" @default.
- W2989409993 hasAuthorship W2989409993A5011466065 @default.
- W2989409993 hasAuthorship W2989409993A5035774010 @default.
- W2989409993 hasAuthorship W2989409993A5069021835 @default.
- W2989409993 hasAuthorship W2989409993A5074490056 @default.
- W2989409993 hasBestOaLocation W29894099931 @default.
- W2989409993 hasConcept C108583219 @default.
- W2989409993 hasConcept C13280743 @default.
- W2989409993 hasConcept C138885662 @default.
- W2989409993 hasConcept C147168706 @default.
- W2989409993 hasConcept C151730666 @default.
- W2989409993 hasConcept C154945302 @default.
- W2989409993 hasConcept C165696696 @default.
- W2989409993 hasConcept C184337299 @default.
- W2989409993 hasConcept C185798385 @default.
- W2989409993 hasConcept C199360897 @default.
- W2989409993 hasConcept C204321447 @default.
- W2989409993 hasConcept C205649164 @default.
- W2989409993 hasConcept C23123220 @default.
- W2989409993 hasConcept C2777462759 @default.
- W2989409993 hasConcept C2779343474 @default.
- W2989409993 hasConcept C38652104 @default.
- W2989409993 hasConcept C41008148 @default.
- W2989409993 hasConcept C41608201 @default.
- W2989409993 hasConcept C41895202 @default.
- W2989409993 hasConcept C50644808 @default.
- W2989409993 hasConcept C86803240 @default.
- W2989409993 hasConcept C90805587 @default.
- W2989409993 hasConceptScore W2989409993C108583219 @default.
- W2989409993 hasConceptScore W2989409993C13280743 @default.
- W2989409993 hasConceptScore W2989409993C138885662 @default.
- W2989409993 hasConceptScore W2989409993C147168706 @default.
- W2989409993 hasConceptScore W2989409993C151730666 @default.
- W2989409993 hasConceptScore W2989409993C154945302 @default.
- W2989409993 hasConceptScore W2989409993C165696696 @default.
- W2989409993 hasConceptScore W2989409993C184337299 @default.
- W2989409993 hasConceptScore W2989409993C185798385 @default.
- W2989409993 hasConceptScore W2989409993C199360897 @default.
- W2989409993 hasConceptScore W2989409993C204321447 @default.
- W2989409993 hasConceptScore W2989409993C205649164 @default.
- W2989409993 hasConceptScore W2989409993C23123220 @default.
- W2989409993 hasConceptScore W2989409993C2777462759 @default.
- W2989409993 hasConceptScore W2989409993C2779343474 @default.
- W2989409993 hasConceptScore W2989409993C38652104 @default.
- W2989409993 hasConceptScore W2989409993C41008148 @default.
- W2989409993 hasConceptScore W2989409993C41608201 @default.
- W2989409993 hasConceptScore W2989409993C41895202 @default.
- W2989409993 hasConceptScore W2989409993C50644808 @default.
- W2989409993 hasConceptScore W2989409993C86803240 @default.
- W2989409993 hasConceptScore W2989409993C90805587 @default.
- W2989409993 hasIssue "4" @default.
- W2989409993 hasLocation W29894099931 @default.
- W2989409993 hasOpenAccess W2989409993 @default.
- W2989409993 hasPrimaryLocation W29894099931 @default.
- W2989409993 hasRelatedWork W1496222301 @default.
- W2989409993 hasRelatedWork W1590307681 @default.
- W2989409993 hasRelatedWork W2911655849 @default.
- W2989409993 hasRelatedWork W3093943447 @default.
- W2989409993 hasRelatedWork W3134737443 @default.
- W2989409993 hasRelatedWork W3200224724 @default.
- W2989409993 hasRelatedWork W3207760230 @default.
- W2989409993 hasRelatedWork W4285370786 @default.
- W2989409993 hasRelatedWork W4286432911 @default.