Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989412656> ?p ?o ?g. }
- W2989412656 endingPage "100393" @default.
- W2989412656 startingPage "100393" @default.
- W2989412656 abstract "In the last decade, Brazil has successfully managed to reduce deforestation in the Amazon forest. However, continued increases in annual deforestation rates call for environmental modeling to support short-term decision-making. This paper presents the functioning of a stepwise spatio-temporal Bayesian Network approach for spatially explicit analysis of deforestation risk based on observation data. The study area comprises a deforestation expansion frontier located in the southwest of Pará state, Brazil. The proposed approach has been successful in estimating deforestation risk over the years. Among the selected variables to compose the Bayesian Network model, distance from hot spots and distance from degraded areas present the highest contribution, while protected areas variable present a significant mitigation effect on the phenomenon. Accuracy assessment indices corroborate the agreement between deforestation events and predictions." @default.
- W2989412656 created "2019-11-22" @default.
- W2989412656 creator A5017938904 @default.
- W2989412656 creator A5044755729 @default.
- W2989412656 creator A5049797859 @default.
- W2989412656 creator A5081937286 @default.
- W2989412656 date "2020-03-01" @default.
- W2989412656 modified "2023-10-17" @default.
- W2989412656 title "A spatio-temporal Bayesian Network approach for deforestation prediction in an Amazon rainforest expansion frontier" @default.
- W2989412656 cites W1962267332 @default.
- W2989412656 cites W1965555277 @default.
- W2989412656 cites W1967251937 @default.
- W2989412656 cites W1972849342 @default.
- W2989412656 cites W1974569692 @default.
- W2989412656 cites W1986503475 @default.
- W2989412656 cites W1990748933 @default.
- W2989412656 cites W1991837234 @default.
- W2989412656 cites W1998728412 @default.
- W2989412656 cites W2001391324 @default.
- W2989412656 cites W2001932503 @default.
- W2989412656 cites W2029987871 @default.
- W2989412656 cites W2044123228 @default.
- W2989412656 cites W2044516270 @default.
- W2989412656 cites W2047581137 @default.
- W2989412656 cites W2048076161 @default.
- W2989412656 cites W2050181558 @default.
- W2989412656 cites W2061692811 @default.
- W2989412656 cites W2063429046 @default.
- W2989412656 cites W2064831533 @default.
- W2989412656 cites W2069988625 @default.
- W2989412656 cites W2080952994 @default.
- W2989412656 cites W2083747635 @default.
- W2989412656 cites W2084195946 @default.
- W2989412656 cites W2086298205 @default.
- W2989412656 cites W2093422142 @default.
- W2989412656 cites W2094738700 @default.
- W2989412656 cites W2110538982 @default.
- W2989412656 cites W2113206323 @default.
- W2989412656 cites W2115058414 @default.
- W2989412656 cites W2119155491 @default.
- W2989412656 cites W2138804088 @default.
- W2989412656 cites W2150798249 @default.
- W2989412656 cites W2158698691 @default.
- W2989412656 cites W2158934691 @default.
- W2989412656 cites W2163202963 @default.
- W2989412656 cites W2171580012 @default.
- W2989412656 cites W2174711521 @default.
- W2989412656 cites W2192774578 @default.
- W2989412656 cites W2329574057 @default.
- W2989412656 cites W2343684081 @default.
- W2989412656 cites W2394413942 @default.
- W2989412656 cites W2440738247 @default.
- W2989412656 cites W2464329271 @default.
- W2989412656 cites W2466430562 @default.
- W2989412656 cites W2467153539 @default.
- W2989412656 cites W2487957832 @default.
- W2989412656 cites W2505053915 @default.
- W2989412656 cites W2528630197 @default.
- W2989412656 cites W2528689750 @default.
- W2989412656 cites W2542169187 @default.
- W2989412656 cites W2616247329 @default.
- W2989412656 cites W2661308611 @default.
- W2989412656 cites W2752829767 @default.
- W2989412656 cites W2800668812 @default.
- W2989412656 doi "https://doi.org/10.1016/j.spasta.2019.100393" @default.
- W2989412656 hasPublicationYear "2020" @default.
- W2989412656 type Work @default.
- W2989412656 sameAs 2989412656 @default.
- W2989412656 citedByCount "15" @default.
- W2989412656 countsByYear W29894126562020 @default.
- W2989412656 countsByYear W29894126562021 @default.
- W2989412656 countsByYear W29894126562022 @default.
- W2989412656 countsByYear W29894126562023 @default.
- W2989412656 crossrefType "journal-article" @default.
- W2989412656 hasAuthorship W2989412656A5017938904 @default.
- W2989412656 hasAuthorship W2989412656A5044755729 @default.
- W2989412656 hasAuthorship W2989412656A5049797859 @default.
- W2989412656 hasAuthorship W2989412656A5081937286 @default.
- W2989412656 hasConcept C105795698 @default.
- W2989412656 hasConcept C107673813 @default.
- W2989412656 hasConcept C149782125 @default.
- W2989412656 hasConcept C166957645 @default.
- W2989412656 hasConcept C18903297 @default.
- W2989412656 hasConcept C199360897 @default.
- W2989412656 hasConcept C205649164 @default.
- W2989412656 hasConcept C2619416 @default.
- W2989412656 hasConcept C2777399953 @default.
- W2989412656 hasConcept C2778571376 @default.
- W2989412656 hasConcept C33724603 @default.
- W2989412656 hasConcept C33923547 @default.
- W2989412656 hasConcept C39432304 @default.
- W2989412656 hasConcept C41008148 @default.
- W2989412656 hasConcept C535291247 @default.
- W2989412656 hasConcept C86803240 @default.
- W2989412656 hasConceptScore W2989412656C105795698 @default.
- W2989412656 hasConceptScore W2989412656C107673813 @default.
- W2989412656 hasConceptScore W2989412656C149782125 @default.
- W2989412656 hasConceptScore W2989412656C166957645 @default.