Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989424303> ?p ?o ?g. }
- W2989424303 endingPage "165723" @default.
- W2989424303 startingPage "165710" @default.
- W2989424303 abstract "The traditional intelligent diagnosis methods of rotating machinery generally require feature extraction of the raw signals in advance. However, it is a very time-consuming and laborious process for extracting the sensitive feature information to improve classification performance. Deep learning method, as a novel machine learning approach, can simultaneously achieve feature extraction and pattern classification. With the characteristics of Deep Belief Network (DBN) and one-dimensional Convolutional Neural Network (1D-CNN) (e.g. learning complex nonlinear, sparse connection and weight sharing), a precise diagnosis method based on the combination of DBN and 1D-CNN is proposed. Firstly, the DBN composed of three pre-trained restricted Boltzmann machines (RBMs) is constructed to achieve feature extraction and dimensionality reduction of the high-dimensional raw data. Secondly, the low-dimensional features extracted by DBN are fed into 1D-CNN for further extracting the abstract features. Finally, Soft-max classifier is employed to identify different operating conditions of rotating machinery. The superiority of the proposed method is validated by comparison with several state-of-the art fault diagnosis methods on two experimental cases. Meanwhile, the proposed method is tested in different background noises and on the imbalanced datasets. The results show that it has higher efficiency and accuracy than the state-of-the art fault diagnosis methods." @default.
- W2989424303 created "2019-11-22" @default.
- W2989424303 creator A5006956791 @default.
- W2989424303 creator A5016125733 @default.
- W2989424303 creator A5039774761 @default.
- W2989424303 creator A5067435847 @default.
- W2989424303 date "2019-01-01" @default.
- W2989424303 modified "2023-10-17" @default.
- W2989424303 title "Fault Diagnosis of Rotating Machinery Based on Combination of Deep Belief Network and One-dimensional Convolutional Neural Network" @default.
- W2989424303 cites W1438045566 @default.
- W2989424303 cites W1781857629 @default.
- W2989424303 cites W1967879920 @default.
- W2989424303 cites W2017422910 @default.
- W2989424303 cites W2022706486 @default.
- W2989424303 cites W2060304859 @default.
- W2989424303 cites W2076063813 @default.
- W2989424303 cites W2078731979 @default.
- W2989424303 cites W2092927559 @default.
- W2989424303 cites W2095569796 @default.
- W2989424303 cites W2096192494 @default.
- W2989424303 cites W2100495367 @default.
- W2989424303 cites W2184192902 @default.
- W2989424303 cites W2258884143 @default.
- W2989424303 cites W2317595875 @default.
- W2989424303 cites W2488793338 @default.
- W2989424303 cites W2509330770 @default.
- W2989424303 cites W2514268906 @default.
- W2989424303 cites W2562762876 @default.
- W2989424303 cites W2735326783 @default.
- W2989424303 cites W2744604411 @default.
- W2989424303 cites W2763583057 @default.
- W2989424303 cites W2792461833 @default.
- W2989424303 cites W2794869810 @default.
- W2989424303 cites W2807272465 @default.
- W2989424303 cites W2808455316 @default.
- W2989424303 cites W2809694228 @default.
- W2989424303 cites W2884552531 @default.
- W2989424303 cites W2896451001 @default.
- W2989424303 cites W2896784509 @default.
- W2989424303 cites W2898125729 @default.
- W2989424303 cites W2906417655 @default.
- W2989424303 cites W2907007702 @default.
- W2989424303 cites W2915229515 @default.
- W2989424303 cites W2917014261 @default.
- W2989424303 cites W2919677123 @default.
- W2989424303 cites W2920611841 @default.
- W2989424303 cites W2922003558 @default.
- W2989424303 cites W2937717931 @default.
- W2989424303 cites W2939053413 @default.
- W2989424303 cites W2942441318 @default.
- W2989424303 cites W2943099062 @default.
- W2989424303 cites W2943389092 @default.
- W2989424303 cites W2945553284 @default.
- W2989424303 cites W2964054038 @default.
- W2989424303 cites W2964248800 @default.
- W2989424303 doi "https://doi.org/10.1109/access.2019.2953490" @default.
- W2989424303 hasPublicationYear "2019" @default.
- W2989424303 type Work @default.
- W2989424303 sameAs 2989424303 @default.
- W2989424303 citedByCount "50" @default.
- W2989424303 countsByYear W29894243032020 @default.
- W2989424303 countsByYear W29894243032021 @default.
- W2989424303 countsByYear W29894243032022 @default.
- W2989424303 countsByYear W29894243032023 @default.
- W2989424303 crossrefType "journal-article" @default.
- W2989424303 hasAuthorship W2989424303A5006956791 @default.
- W2989424303 hasAuthorship W2989424303A5016125733 @default.
- W2989424303 hasAuthorship W2989424303A5039774761 @default.
- W2989424303 hasAuthorship W2989424303A5067435847 @default.
- W2989424303 hasBestOaLocation W29894243031 @default.
- W2989424303 hasConcept C108583219 @default.
- W2989424303 hasConcept C119857082 @default.
- W2989424303 hasConcept C127313418 @default.
- W2989424303 hasConcept C153180895 @default.
- W2989424303 hasConcept C154945302 @default.
- W2989424303 hasConcept C165205528 @default.
- W2989424303 hasConcept C175551986 @default.
- W2989424303 hasConcept C41008148 @default.
- W2989424303 hasConcept C50644808 @default.
- W2989424303 hasConcept C81363708 @default.
- W2989424303 hasConceptScore W2989424303C108583219 @default.
- W2989424303 hasConceptScore W2989424303C119857082 @default.
- W2989424303 hasConceptScore W2989424303C127313418 @default.
- W2989424303 hasConceptScore W2989424303C153180895 @default.
- W2989424303 hasConceptScore W2989424303C154945302 @default.
- W2989424303 hasConceptScore W2989424303C165205528 @default.
- W2989424303 hasConceptScore W2989424303C175551986 @default.
- W2989424303 hasConceptScore W2989424303C41008148 @default.
- W2989424303 hasConceptScore W2989424303C50644808 @default.
- W2989424303 hasConceptScore W2989424303C81363708 @default.
- W2989424303 hasFunder F4320321001 @default.
- W2989424303 hasFunder F4320321392 @default.
- W2989424303 hasFunder F4320322186 @default.
- W2989424303 hasLocation W29894243031 @default.
- W2989424303 hasOpenAccess W2989424303 @default.
- W2989424303 hasPrimaryLocation W29894243031 @default.
- W2989424303 hasRelatedWork W2337926734 @default.
- W2989424303 hasRelatedWork W2732542196 @default.