Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989431519> ?p ?o ?g. }
- W2989431519 endingPage "1317" @default.
- W2989431519 startingPage "1306" @default.
- W2989431519 abstract "There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson's disease (PD). A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease. Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long. With an attempt to avoid discomfort to participants in performing long physical tasks for data recording, this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory (LSTM) neural networks. Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture, fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects." @default.
- W2989431519 created "2019-11-22" @default.
- W2989431519 creator A5009439842 @default.
- W2989431519 creator A5032296811 @default.
- W2989431519 creator A5049986641 @default.
- W2989431519 creator A5078221274 @default.
- W2989431519 date "2019-11-01" @default.
- W2989431519 modified "2023-10-11" @default.
- W2989431519 title "Classification of short time series in early Parkinsons disease with deep learning of fuzzy recurrence plots" @default.
- W2989431519 cites W1048390352 @default.
- W2989431519 cites W1485009520 @default.
- W2989431519 cites W1549386224 @default.
- W2989431519 cites W1689711448 @default.
- W2989431519 cites W1815076433 @default.
- W2989431519 cites W1840264174 @default.
- W2989431519 cites W2005708641 @default.
- W2989431519 cites W2018727741 @default.
- W2989431519 cites W2019529630 @default.
- W2989431519 cites W2031547184 @default.
- W2989431519 cites W2039520076 @default.
- W2989431519 cites W2057152416 @default.
- W2989431519 cites W2064675550 @default.
- W2989431519 cites W2081681829 @default.
- W2989431519 cites W2097117768 @default.
- W2989431519 cites W2099593264 @default.
- W2989431519 cites W2113076747 @default.
- W2989431519 cites W2130942839 @default.
- W2989431519 cites W2131774270 @default.
- W2989431519 cites W2160815625 @default.
- W2989431519 cites W2162659118 @default.
- W2989431519 cites W2171928131 @default.
- W2989431519 cites W2259317772 @default.
- W2989431519 cites W2306394264 @default.
- W2989431519 cites W2328336187 @default.
- W2989431519 cites W2403629665 @default.
- W2989431519 cites W2524932991 @default.
- W2989431519 cites W2551393996 @default.
- W2989431519 cites W2553819490 @default.
- W2989431519 cites W2583191924 @default.
- W2989431519 cites W2618530766 @default.
- W2989431519 cites W2741431817 @default.
- W2989431519 cites W2763079654 @default.
- W2989431519 cites W2792758035 @default.
- W2989431519 cites W2806424599 @default.
- W2989431519 cites W2811255424 @default.
- W2989431519 cites W2889197740 @default.
- W2989431519 cites W2892035503 @default.
- W2989431519 cites W2898843852 @default.
- W2989431519 cites W2912888010 @default.
- W2989431519 cites W2963246338 @default.
- W2989431519 cites W2964010366 @default.
- W2989431519 cites W2964277455 @default.
- W2989431519 cites W2964308564 @default.
- W2989431519 cites W3103552852 @default.
- W2989431519 cites W3124661333 @default.
- W2989431519 cites W3023071679 @default.
- W2989431519 doi "https://doi.org/10.1109/jas.2019.1911774" @default.
- W2989431519 hasPublicationYear "2019" @default.
- W2989431519 type Work @default.
- W2989431519 sameAs 2989431519 @default.
- W2989431519 citedByCount "45" @default.
- W2989431519 countsByYear W29894315192020 @default.
- W2989431519 countsByYear W29894315192021 @default.
- W2989431519 countsByYear W29894315192022 @default.
- W2989431519 countsByYear W29894315192023 @default.
- W2989431519 crossrefType "journal-article" @default.
- W2989431519 hasAuthorship W2989431519A5009439842 @default.
- W2989431519 hasAuthorship W2989431519A5032296811 @default.
- W2989431519 hasAuthorship W2989431519A5049986641 @default.
- W2989431519 hasAuthorship W2989431519A5078221274 @default.
- W2989431519 hasBestOaLocation W29894315192 @default.
- W2989431519 hasConcept C111472728 @default.
- W2989431519 hasConcept C119857082 @default.
- W2989431519 hasConcept C133488467 @default.
- W2989431519 hasConcept C138885662 @default.
- W2989431519 hasConcept C143724316 @default.
- W2989431519 hasConcept C147168706 @default.
- W2989431519 hasConcept C149635348 @default.
- W2989431519 hasConcept C150594956 @default.
- W2989431519 hasConcept C151406439 @default.
- W2989431519 hasConcept C151730666 @default.
- W2989431519 hasConcept C153180895 @default.
- W2989431519 hasConcept C154945302 @default.
- W2989431519 hasConcept C189950617 @default.
- W2989431519 hasConcept C2776401178 @default.
- W2989431519 hasConcept C41008148 @default.
- W2989431519 hasConcept C41895202 @default.
- W2989431519 hasConcept C50644808 @default.
- W2989431519 hasConcept C58166 @default.
- W2989431519 hasConcept C86803240 @default.
- W2989431519 hasConceptScore W2989431519C111472728 @default.
- W2989431519 hasConceptScore W2989431519C119857082 @default.
- W2989431519 hasConceptScore W2989431519C133488467 @default.
- W2989431519 hasConceptScore W2989431519C138885662 @default.
- W2989431519 hasConceptScore W2989431519C143724316 @default.
- W2989431519 hasConceptScore W2989431519C147168706 @default.
- W2989431519 hasConceptScore W2989431519C149635348 @default.
- W2989431519 hasConceptScore W2989431519C150594956 @default.