Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989432900> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2989432900 abstract "EEG signal is one of the main sources for implementation of Brain-Computer Interface (BCI) technology. The BCI is a non-muscle communication link between brain and external device, which commonly designed to enable patients with neurological condition to interact with others using their brain signals. In this work, we investigated the classification of EEG eye state data using statistical and CSP filter technique. Statistical feature has been applied in EEG signal classifications of eye-close and eye-open conditions but the accuracy is reported to be less than 78%. CSP filter is a well-known method for classification of motor imagery EEG in the BCI field but when applied for EEG eye state classification, it only gives accuracy similar to statistical feature, that is less than 78%. These indicate that both methods give good discrimination of the eye state condition but on it own, will not be sufficient to produce good classification accuracy. Hence, this work aims to develop an algorithm using statistical-CSP feature for eye state classification from EEG signal. This is taking advantage on the discriminative feature provided by both methods, statistical and CSP filter, which is expected to increase the accuracy of the eye state classification algorithm. The process of developing the EEG eye state classification algorithm, includes data extraction, pre-processing, data normalization, feature extraction, feature selection and classification are detailed out in this paper. Number of selected electrodes are divided into 3 groups, with 2 groups having a set of 7 different electrodes and 1 group that combined both sets of 7 electrodes giving a total of 14 electrodes. Using ten-fold cross validation, the highest accuracy of statistical feature is at 54.3% and the highest accuracy of CSP feature is at 72.3% generated using fine Gaussian SVM classifier. Result from this work has shown that combining both statistical and CSP features from 7 electrodes of Group I has shown to result in good accuracy of 99.92%." @default.
- W2989432900 created "2019-11-22" @default.
- W2989432900 creator A5039559815 @default.
- W2989432900 creator A5046722008 @default.
- W2989432900 creator A5054937521 @default.
- W2989432900 date "2019-10-01" @default.
- W2989432900 modified "2023-09-25" @default.
- W2989432900 title "EEG Eye State Identification based on Statistical Feature and Common Spatial Pattern Filter" @default.
- W2989432900 cites W1632505460 @default.
- W2989432900 cites W2025758384 @default.
- W2989432900 cites W2095905361 @default.
- W2989432900 cites W2142280324 @default.
- W2989432900 cites W2587601368 @default.
- W2989432900 cites W2610528705 @default.
- W2989432900 cites W2626945539 @default.
- W2989432900 cites W2733192024 @default.
- W2989432900 cites W2885152687 @default.
- W2989432900 cites W2946783148 @default.
- W2989432900 cites W2962755847 @default.
- W2989432900 cites W53172824 @default.
- W2989432900 cites W571805963 @default.
- W2989432900 doi "https://doi.org/10.1109/scored.2019.8896270" @default.
- W2989432900 hasPublicationYear "2019" @default.
- W2989432900 type Work @default.
- W2989432900 sameAs 2989432900 @default.
- W2989432900 citedByCount "0" @default.
- W2989432900 crossrefType "proceedings-article" @default.
- W2989432900 hasAuthorship W2989432900A5039559815 @default.
- W2989432900 hasAuthorship W2989432900A5046722008 @default.
- W2989432900 hasAuthorship W2989432900A5054937521 @default.
- W2989432900 hasConcept C106131492 @default.
- W2989432900 hasConcept C110083411 @default.
- W2989432900 hasConcept C118552586 @default.
- W2989432900 hasConcept C136886441 @default.
- W2989432900 hasConcept C138885662 @default.
- W2989432900 hasConcept C144024400 @default.
- W2989432900 hasConcept C148483581 @default.
- W2989432900 hasConcept C153180895 @default.
- W2989432900 hasConcept C154945302 @default.
- W2989432900 hasConcept C15744967 @default.
- W2989432900 hasConcept C173201364 @default.
- W2989432900 hasConcept C19165224 @default.
- W2989432900 hasConcept C2776401178 @default.
- W2989432900 hasConcept C31972630 @default.
- W2989432900 hasConcept C41008148 @default.
- W2989432900 hasConcept C41895202 @default.
- W2989432900 hasConcept C522805319 @default.
- W2989432900 hasConcept C52622490 @default.
- W2989432900 hasConcept C97931131 @default.
- W2989432900 hasConceptScore W2989432900C106131492 @default.
- W2989432900 hasConceptScore W2989432900C110083411 @default.
- W2989432900 hasConceptScore W2989432900C118552586 @default.
- W2989432900 hasConceptScore W2989432900C136886441 @default.
- W2989432900 hasConceptScore W2989432900C138885662 @default.
- W2989432900 hasConceptScore W2989432900C144024400 @default.
- W2989432900 hasConceptScore W2989432900C148483581 @default.
- W2989432900 hasConceptScore W2989432900C153180895 @default.
- W2989432900 hasConceptScore W2989432900C154945302 @default.
- W2989432900 hasConceptScore W2989432900C15744967 @default.
- W2989432900 hasConceptScore W2989432900C173201364 @default.
- W2989432900 hasConceptScore W2989432900C19165224 @default.
- W2989432900 hasConceptScore W2989432900C2776401178 @default.
- W2989432900 hasConceptScore W2989432900C31972630 @default.
- W2989432900 hasConceptScore W2989432900C41008148 @default.
- W2989432900 hasConceptScore W2989432900C41895202 @default.
- W2989432900 hasConceptScore W2989432900C522805319 @default.
- W2989432900 hasConceptScore W2989432900C52622490 @default.
- W2989432900 hasConceptScore W2989432900C97931131 @default.
- W2989432900 hasLocation W29894329001 @default.
- W2989432900 hasOpenAccess W2989432900 @default.
- W2989432900 hasPrimaryLocation W29894329001 @default.
- W2989432900 hasRelatedWork W1148190473 @default.
- W2989432900 hasRelatedWork W2083436745 @default.
- W2989432900 hasRelatedWork W2092103389 @default.
- W2989432900 hasRelatedWork W2150339392 @default.
- W2989432900 hasRelatedWork W2163791372 @default.
- W2989432900 hasRelatedWork W2292886377 @default.
- W2989432900 hasRelatedWork W2361863859 @default.
- W2989432900 hasRelatedWork W2373330094 @default.
- W2989432900 hasRelatedWork W2518353564 @default.
- W2989432900 hasRelatedWork W2610854002 @default.
- W2989432900 hasRelatedWork W2625088583 @default.
- W2989432900 hasRelatedWork W2883269930 @default.
- W2989432900 hasRelatedWork W2884139327 @default.
- W2989432900 hasRelatedWork W2943380665 @default.
- W2989432900 hasRelatedWork W2991940298 @default.
- W2989432900 hasRelatedWork W3006342631 @default.
- W2989432900 hasRelatedWork W3011812446 @default.
- W2989432900 hasRelatedWork W3040234958 @default.
- W2989432900 hasRelatedWork W3092015453 @default.
- W2989432900 hasRelatedWork W3208175668 @default.
- W2989432900 isParatext "false" @default.
- W2989432900 isRetracted "false" @default.
- W2989432900 magId "2989432900" @default.
- W2989432900 workType "article" @default.