Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989446870> ?p ?o ?g. }
- W2989446870 endingPage "426" @default.
- W2989446870 startingPage "402" @default.
- W2989446870 abstract "Abstract Credit score classification is a prominent research problem in the banking or financial industry, and its predictive performance is responsible for the profitability of financial industry. This paper addresses how Spiking Extreme Learning Machine (SELM) can be effectively used for credit score classification. A novel spike‐generating function is proposed in Leaky Nonlinear Integrate and Fire Model (LNIF). Its interspike period is computed and utilized in the extreme learning machine (ELM) for credit score classification. The proposed model is named as SELM and is validated on five real‐world credit scoring datasets namely: Australian, German‐categorical, German‐numerical, Japanese, and Bankruptcy. Further, results obtained by SELM are compared with back propagation, probabilistic neural network, ELM, voting‐based Q ‐generalized extreme learning machine, Radial basis neural network and ELM with some existing spiking neuron models in terms of classification accuracy, Area under curve (AUC), H ‐measure and computational time. From the experimental results, it has been noticed that improvement in accuracy and execution time for the proposed SELM is highly statistically important for all aforementioned credit scoring datasets. Thus, integrating a biological spiking function with ELM makes it more efficient for categorization." @default.
- W2989446870 created "2019-11-22" @default.
- W2989446870 creator A5021184817 @default.
- W2989446870 creator A5053043725 @default.
- W2989446870 creator A5091894325 @default.
- W2989446870 date "2019-11-03" @default.
- W2989446870 modified "2023-10-18" @default.
- W2989446870 title "Credit score classification using spiking extreme learning machine" @default.
- W2989446870 cites W1782678291 @default.
- W2989446870 cites W1964168965 @default.
- W2989446870 cites W1971547695 @default.
- W2989446870 cites W1990113270 @default.
- W2989446870 cites W1990938413 @default.
- W2989446870 cites W1993717606 @default.
- W2989446870 cites W1993922907 @default.
- W2989446870 cites W1995254696 @default.
- W2989446870 cites W2001753223 @default.
- W2989446870 cites W2004076523 @default.
- W2989446870 cites W2011108441 @default.
- W2989446870 cites W2015954856 @default.
- W2989446870 cites W2026131661 @default.
- W2989446870 cites W2029864452 @default.
- W2989446870 cites W2029924743 @default.
- W2989446870 cites W2032784723 @default.
- W2989446870 cites W2051455168 @default.
- W2989446870 cites W2056221673 @default.
- W2989446870 cites W2059447090 @default.
- W2989446870 cites W2076964542 @default.
- W2989446870 cites W2079196938 @default.
- W2989446870 cites W2083862258 @default.
- W2989446870 cites W2083964139 @default.
- W2989446870 cites W2090727353 @default.
- W2989446870 cites W2093829413 @default.
- W2989446870 cites W2099502830 @default.
- W2989446870 cites W2103780778 @default.
- W2989446870 cites W2111072639 @default.
- W2989446870 cites W2121971770 @default.
- W2989446870 cites W2122040390 @default.
- W2989446870 cites W2124258777 @default.
- W2989446870 cites W2130378394 @default.
- W2989446870 cites W2138260443 @default.
- W2989446870 cites W2141166794 @default.
- W2989446870 cites W2164653071 @default.
- W2989446870 cites W2169171650 @default.
- W2989446870 cites W2184721046 @default.
- W2989446870 cites W2336505047 @default.
- W2989446870 cites W2461391084 @default.
- W2989446870 cites W2562923621 @default.
- W2989446870 cites W2614275469 @default.
- W2989446870 cites W2767212472 @default.
- W2989446870 cites W2792224072 @default.
- W2989446870 cites W2805274166 @default.
- W2989446870 cites W2922304187 @default.
- W2989446870 cites W4212883601 @default.
- W2989446870 doi "https://doi.org/10.1111/coin.12242" @default.
- W2989446870 hasPublicationYear "2019" @default.
- W2989446870 type Work @default.
- W2989446870 sameAs 2989446870 @default.
- W2989446870 citedByCount "22" @default.
- W2989446870 countsByYear W29894468702020 @default.
- W2989446870 countsByYear W29894468702021 @default.
- W2989446870 countsByYear W29894468702022 @default.
- W2989446870 countsByYear W29894468702023 @default.
- W2989446870 crossrefType "journal-article" @default.
- W2989446870 hasAuthorship W2989446870A5021184817 @default.
- W2989446870 hasAuthorship W2989446870A5053043725 @default.
- W2989446870 hasAuthorship W2989446870A5091894325 @default.
- W2989446870 hasConcept C119857082 @default.
- W2989446870 hasConcept C12267149 @default.
- W2989446870 hasConcept C124101348 @default.
- W2989446870 hasConcept C153180895 @default.
- W2989446870 hasConcept C154945302 @default.
- W2989446870 hasConcept C2780150128 @default.
- W2989446870 hasConcept C41008148 @default.
- W2989446870 hasConcept C50644808 @default.
- W2989446870 hasConceptScore W2989446870C119857082 @default.
- W2989446870 hasConceptScore W2989446870C12267149 @default.
- W2989446870 hasConceptScore W2989446870C124101348 @default.
- W2989446870 hasConceptScore W2989446870C153180895 @default.
- W2989446870 hasConceptScore W2989446870C154945302 @default.
- W2989446870 hasConceptScore W2989446870C2780150128 @default.
- W2989446870 hasConceptScore W2989446870C41008148 @default.
- W2989446870 hasConceptScore W2989446870C50644808 @default.
- W2989446870 hasIssue "2" @default.
- W2989446870 hasLocation W29894468701 @default.
- W2989446870 hasOpenAccess W2989446870 @default.
- W2989446870 hasPrimaryLocation W29894468701 @default.
- W2989446870 hasRelatedWork W2041399278 @default.
- W2989446870 hasRelatedWork W2056016498 @default.
- W2989446870 hasRelatedWork W2136184105 @default.
- W2989446870 hasRelatedWork W2277768259 @default.
- W2989446870 hasRelatedWork W2336974148 @default.
- W2989446870 hasRelatedWork W2389470892 @default.
- W2989446870 hasRelatedWork W3013515612 @default.
- W2989446870 hasRelatedWork W3195168932 @default.
- W2989446870 hasRelatedWork W2187500075 @default.
- W2989446870 hasRelatedWork W2345184372 @default.
- W2989446870 hasVolume "36" @default.