Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989461521> ?p ?o ?g. }
- W2989461521 endingPage "105228" @default.
- W2989461521 startingPage "105228" @default.
- W2989461521 abstract "Systematic reviews involve mining literature databases to identify relevant studies. Identifying potentially relevant studies can be informed by computational tools comparing text similarity between candidate studies and selected key (i.e., seed) references. Challenge Using computational approaches to identify relevant studies for risk assessments is challenging, as these assessments examine multiple chemical effects across lifestages (e.g., human health risk assessments) or specific effects of multiple chemicals (e.g., cumulative risk). The broad scope of potentially relevant literature can make selection of seed references difficult. Approach We developed a generalized computational scoping strategy to identify human health relevant studies for multiple chemicals and multiple effects. We used semi-supervised machine learning to prioritize studies to review manually with training data derived from references cited in the hazard identification sections of several US EPA Integrated Risk Information System (IRIS) assessments. These generic training data or seed studies were clustered with the unclassified corpus to group studies based on text similarity. Clusters containing a high proportion of seed studies were prioritized for manual review. Chemical names were removed from seed studies prior to clustering resulting in a generic, chemical-independent method for identifying potentially human health relevant studies. We developed a case study that focused on identifying the array of chemicals that have been studied with respect to in utero exposure to test the recall of this novel literature searching strategy. We then evaluated the general strategy of using generic, chemical-independent training data with two previous IRIS assessments by comparing studies predicted relevant to those used in the assessments (i.e., total relevant). Outcome A keyword search designed to retrieve studies that examined the in utero effects of environmental chemicals identified over 54,000 candidate references. Clustering algorithms were applied using 1456 studies from multiple IRIS assessments with chemical names removed as training data or seeds (i.e., semi-supervised learning). Using a six-algorithm ensemble approach 2602 articles, or approximately 5% of candidate references, were voted relevant by four or more clustering algorithms and manual review confirmed nearly 50% of these studies were relevant. Further evaluations on two IRIS assessments, using a nine-algorithm ensemble approach and a set of generic, chemical-independent, externally-derived seed studies correctly identified 77-83% of hazard identification studies published in the assessments and eliminated the need to manually screen more than 75% of search results on average. Limitations The chemical-independent approach used to build the training literature set provides a broad and unbiased picture across a variety of endpoints and environmental exposures but does not systematically identify all available data. Variance between actual and predicted relevant studies will be greater because of the external and non-random origin of seed study selection. This approach depends on access to readily available generic training data that can be used to locate relevant references in an unclassified corpus. Impact A generic approach to identifying human health relevant studies could be an important first step in literature evaluation for risk assessments. This initial scoping approach could facilitate faster literature evaluation by focusing reviewer efforts, as well as potentially minimize reviewer bias in selection of key studies. Using externally-derived training data has applicability particularly for databases with very low search precision where identifying training data may be cost-prohibitive." @default.
- W2989461521 created "2019-11-22" @default.
- W2989461521 creator A5006303273 @default.
- W2989461521 creator A5037979430 @default.
- W2989461521 creator A5039556894 @default.
- W2989461521 creator A5051742395 @default.
- W2989461521 creator A5053461510 @default.
- W2989461521 creator A5053921600 @default.
- W2989461521 creator A5054520990 @default.
- W2989461521 creator A5084175806 @default.
- W2989461521 creator A5090004855 @default.
- W2989461521 date "2020-01-01" @default.
- W2989461521 modified "2023-09-27" @default.
- W2989461521 title "Novel text analytics approach to identify relevant literature for human health risk assessments: A pilot study with health effects of in utero exposures" @default.
- W2989461521 cites W115538672 @default.
- W2989461521 cites W1519519196 @default.
- W2989461521 cites W1576855214 @default.
- W2989461521 cites W168362576 @default.
- W2989461521 cites W1857196758 @default.
- W2989461521 cites W1966402929 @default.
- W2989461521 cites W1982663268 @default.
- W2989461521 cites W2019259707 @default.
- W2989461521 cites W2023196891 @default.
- W2989461521 cites W2043566294 @default.
- W2989461521 cites W2045384400 @default.
- W2989461521 cites W2045580630 @default.
- W2989461521 cites W2050639240 @default.
- W2989461521 cites W2054239157 @default.
- W2989461521 cites W2056895234 @default.
- W2989461521 cites W2063198586 @default.
- W2989461521 cites W2066218383 @default.
- W2989461521 cites W2069740225 @default.
- W2989461521 cites W2076859891 @default.
- W2989461521 cites W2098280994 @default.
- W2989461521 cites W2128417352 @default.
- W2989461521 cites W2134906789 @default.
- W2989461521 cites W2147469877 @default.
- W2989461521 cites W2154703852 @default.
- W2989461521 cites W2158188390 @default.
- W2989461521 cites W2168816058 @default.
- W2989461521 cites W2196703117 @default.
- W2989461521 cites W2327950884 @default.
- W2989461521 cites W2625299527 @default.
- W2989461521 cites W2775952591 @default.
- W2989461521 cites W4313371821 @default.
- W2989461521 doi "https://doi.org/10.1016/j.envint.2019.105228" @default.
- W2989461521 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31711016" @default.
- W2989461521 hasPublicationYear "2020" @default.
- W2989461521 type Work @default.
- W2989461521 sameAs 2989461521 @default.
- W2989461521 citedByCount "12" @default.
- W2989461521 countsByYear W29894615212020 @default.
- W2989461521 countsByYear W29894615212021 @default.
- W2989461521 countsByYear W29894615212022 @default.
- W2989461521 crossrefType "journal-article" @default.
- W2989461521 hasAuthorship W2989461521A5006303273 @default.
- W2989461521 hasAuthorship W2989461521A5037979430 @default.
- W2989461521 hasAuthorship W2989461521A5039556894 @default.
- W2989461521 hasAuthorship W2989461521A5051742395 @default.
- W2989461521 hasAuthorship W2989461521A5053461510 @default.
- W2989461521 hasAuthorship W2989461521A5053921600 @default.
- W2989461521 hasAuthorship W2989461521A5054520990 @default.
- W2989461521 hasAuthorship W2989461521A5084175806 @default.
- W2989461521 hasAuthorship W2989461521A5090004855 @default.
- W2989461521 hasBestOaLocation W29894615211 @default.
- W2989461521 hasConcept C103278499 @default.
- W2989461521 hasConcept C115961682 @default.
- W2989461521 hasConcept C116834253 @default.
- W2989461521 hasConcept C119857082 @default.
- W2989461521 hasConcept C12174686 @default.
- W2989461521 hasConcept C124101348 @default.
- W2989461521 hasConcept C154945302 @default.
- W2989461521 hasConcept C23123220 @default.
- W2989461521 hasConcept C2522767166 @default.
- W2989461521 hasConcept C38652104 @default.
- W2989461521 hasConcept C41008148 @default.
- W2989461521 hasConcept C59822182 @default.
- W2989461521 hasConcept C73555534 @default.
- W2989461521 hasConcept C86803240 @default.
- W2989461521 hasConceptScore W2989461521C103278499 @default.
- W2989461521 hasConceptScore W2989461521C115961682 @default.
- W2989461521 hasConceptScore W2989461521C116834253 @default.
- W2989461521 hasConceptScore W2989461521C119857082 @default.
- W2989461521 hasConceptScore W2989461521C12174686 @default.
- W2989461521 hasConceptScore W2989461521C124101348 @default.
- W2989461521 hasConceptScore W2989461521C154945302 @default.
- W2989461521 hasConceptScore W2989461521C23123220 @default.
- W2989461521 hasConceptScore W2989461521C2522767166 @default.
- W2989461521 hasConceptScore W2989461521C38652104 @default.
- W2989461521 hasConceptScore W2989461521C41008148 @default.
- W2989461521 hasConceptScore W2989461521C59822182 @default.
- W2989461521 hasConceptScore W2989461521C73555534 @default.
- W2989461521 hasConceptScore W2989461521C86803240 @default.
- W2989461521 hasLocation W29894615211 @default.
- W2989461521 hasLocation W29894615212 @default.
- W2989461521 hasLocation W29894615213 @default.
- W2989461521 hasLocation W29894615214 @default.
- W2989461521 hasOpenAccess W2989461521 @default.