Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989476199> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2989476199 abstract "Logistic regression is an effective tool in case-control analysis. With the advanced high throughput technology, a quest to seek a fast and efficient method in fitting high-dimensional logistic regression has gained much interest. An empirical Bayes model for logistic regression is considered in this article. A spike-and-slab prior is used for variable selection purpose, which plays a vital role in building an effective predictive model while making model interpretable. To increase the power of variable selection, we incorporate biological knowledge through the Ising prior. The development of the iterated conditional modes/medians (ICM/M) algorithm is proposed to fit the logistic model that has computational advantage over Markov Chain Monte Carlo (MCMC) algorithms. The implementation of the ICM/M algorithm for both linear and logistic models can be found in R package icmm that is freely available on Comprehensive R Archive Network (CRAN). Simulation studies were carried out to assess the performances of our method, with lasso and adaptive lasso as benchmark. Overall, the simulation studies show that the ICM/M outperform the others in terms of number of false positives and have competitive predictive ability. An application to a real data set from Parkinson's disease study was also carried out for illustration. To identify important variables, our approach provides flexibility to select variables based on local posterior probabilities while controlling false discovery rate at a desired level rather than relying only on regression coefficients." @default.
- W2989476199 created "2019-11-22" @default.
- W2989476199 creator A5021108739 @default.
- W2989476199 creator A5053204257 @default.
- W2989476199 creator A5068834831 @default.
- W2989476199 date "2020-07-01" @default.
- W2989476199 modified "2023-09-23" @default.
- W2989476199 title "Integrating Biological Knowledge Into Case–Control Analysis Through Iterated Conditional Modes/Medians Algorithm" @default.
- W2989476199 cites W1524469599 @default.
- W2989476199 cites W1967336410 @default.
- W2989476199 cites W1979659124 @default.
- W2989476199 cites W1991108537 @default.
- W2989476199 cites W2020925091 @default.
- W2989476199 cites W2036183522 @default.
- W2989476199 cites W2055025635 @default.
- W2989476199 cites W2148641246 @default.
- W2989476199 cites W2258586473 @default.
- W2989476199 cites W2340446708 @default.
- W2989476199 cites W2462053388 @default.
- W2989476199 cites W2546834208 @default.
- W2989476199 cites W3101256146 @default.
- W2989476199 doi "https://doi.org/10.1089/cmb.2019.0319" @default.
- W2989476199 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7398431" @default.
- W2989476199 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31692371" @default.
- W2989476199 hasPublicationYear "2020" @default.
- W2989476199 type Work @default.
- W2989476199 sameAs 2989476199 @default.
- W2989476199 citedByCount "1" @default.
- W2989476199 countsByYear W29894761992021 @default.
- W2989476199 crossrefType "journal-article" @default.
- W2989476199 hasAuthorship W2989476199A5021108739 @default.
- W2989476199 hasAuthorship W2989476199A5053204257 @default.
- W2989476199 hasAuthorship W2989476199A5068834831 @default.
- W2989476199 hasBestOaLocation W29894761992 @default.
- W2989476199 hasConcept C105795698 @default.
- W2989476199 hasConcept C107673813 @default.
- W2989476199 hasConcept C111350023 @default.
- W2989476199 hasConcept C11413529 @default.
- W2989476199 hasConcept C119857082 @default.
- W2989476199 hasConcept C124101348 @default.
- W2989476199 hasConcept C13280743 @default.
- W2989476199 hasConcept C136764020 @default.
- W2989476199 hasConcept C148483581 @default.
- W2989476199 hasConcept C151956035 @default.
- W2989476199 hasConcept C154945302 @default.
- W2989476199 hasConcept C185798385 @default.
- W2989476199 hasConcept C205649164 @default.
- W2989476199 hasConcept C33923547 @default.
- W2989476199 hasConcept C37616216 @default.
- W2989476199 hasConcept C41008148 @default.
- W2989476199 hasConceptScore W2989476199C105795698 @default.
- W2989476199 hasConceptScore W2989476199C107673813 @default.
- W2989476199 hasConceptScore W2989476199C111350023 @default.
- W2989476199 hasConceptScore W2989476199C11413529 @default.
- W2989476199 hasConceptScore W2989476199C119857082 @default.
- W2989476199 hasConceptScore W2989476199C124101348 @default.
- W2989476199 hasConceptScore W2989476199C13280743 @default.
- W2989476199 hasConceptScore W2989476199C136764020 @default.
- W2989476199 hasConceptScore W2989476199C148483581 @default.
- W2989476199 hasConceptScore W2989476199C151956035 @default.
- W2989476199 hasConceptScore W2989476199C154945302 @default.
- W2989476199 hasConceptScore W2989476199C185798385 @default.
- W2989476199 hasConceptScore W2989476199C205649164 @default.
- W2989476199 hasConceptScore W2989476199C33923547 @default.
- W2989476199 hasConceptScore W2989476199C37616216 @default.
- W2989476199 hasConceptScore W2989476199C41008148 @default.
- W2989476199 hasLocation W29894761991 @default.
- W2989476199 hasLocation W29894761992 @default.
- W2989476199 hasOpenAccess W2989476199 @default.
- W2989476199 hasPrimaryLocation W29894761991 @default.
- W2989476199 hasRelatedWork W12829028 @default.
- W2989476199 hasRelatedWork W13704299 @default.
- W2989476199 hasRelatedWork W3262960 @default.
- W2989476199 hasRelatedWork W351505 @default.
- W2989476199 hasRelatedWork W4061672 @default.
- W2989476199 hasRelatedWork W4978094 @default.
- W2989476199 hasRelatedWork W5094569 @default.
- W2989476199 hasRelatedWork W6285965 @default.
- W2989476199 hasRelatedWork W8267861 @default.
- W2989476199 hasRelatedWork W855484 @default.
- W2989476199 isParatext "false" @default.
- W2989476199 isRetracted "false" @default.
- W2989476199 magId "2989476199" @default.
- W2989476199 workType "article" @default.