Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989492704> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2989492704 abstract "Linear Prediction (LP) analysis is speech analysis to estimate AR (Auto-Regressive) coefficients to represent the all-pole spectrum that is applied in speech synthesis recently besides speech coding. We have proposed l <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> -norm optimization based TV-CAR (Time-Varying Complex AR) speech analysis for an analytic signal, MMSE (Minimizing Mean Square Error) or ELS (Extended Least Square) method, and we have applied them into the speech processing such as robust ASR or F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> estimation of speech. On the other hand, B.Kleijn et al. have proposed Regularized Linear Prediction (RLP) method to suppress pitch related bias that is an overestimation of the first formant. In the RLP, l <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> -norm regularized term that is the norm of spectral changes in the frequencies is introduced to suppress the rapid spectral changes. The RLP estimates the parameter so as to minimize l <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> -norm criterion added by the l <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> -norm regularized penalty term. In this paper, the RLP-based TV-CAR speech analysis is proposed and evaluated with the F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> estimation of speech using IRAPT (Instantaneous RAPT) with Keele Pitch Database under noisy conditions." @default.
- W2989492704 created "2019-11-22" @default.
- W2989492704 creator A5073048298 @default.
- W2989492704 date "2019-09-01" @default.
- W2989492704 modified "2023-09-25" @default.
- W2989492704 title "TV-CAR speech analysis based on Regularized LP" @default.
- W2989492704 cites W1966264494 @default.
- W2989492704 cites W1970278793 @default.
- W2989492704 cites W1995319862 @default.
- W2989492704 cites W2020925091 @default.
- W2989492704 cites W2038594224 @default.
- W2989492704 cites W2055985800 @default.
- W2989492704 cites W2098488280 @default.
- W2989492704 cites W2123684326 @default.
- W2989492704 cites W2130250667 @default.
- W2989492704 cites W2135046866 @default.
- W2989492704 cites W2137213227 @default.
- W2989492704 cites W2155098255 @default.
- W2989492704 cites W2213300207 @default.
- W2989492704 cites W23669922 @default.
- W2989492704 cites W2579473097 @default.
- W2989492704 cites W2889528406 @default.
- W2989492704 cites W2943996746 @default.
- W2989492704 cites W2963589210 @default.
- W2989492704 cites W4235713725 @default.
- W2989492704 doi "https://doi.org/10.23919/eusipco.2019.8902667" @default.
- W2989492704 hasPublicationYear "2019" @default.
- W2989492704 type Work @default.
- W2989492704 sameAs 2989492704 @default.
- W2989492704 citedByCount "5" @default.
- W2989492704 countsByYear W29894927042020 @default.
- W2989492704 countsByYear W29894927042021 @default.
- W2989492704 countsByYear W29894927042022 @default.
- W2989492704 crossrefType "proceedings-article" @default.
- W2989492704 hasAuthorship W2989492704A5073048298 @default.
- W2989492704 hasConcept C104267543 @default.
- W2989492704 hasConcept C105795698 @default.
- W2989492704 hasConcept C11413529 @default.
- W2989492704 hasConcept C121332964 @default.
- W2989492704 hasConcept C139945424 @default.
- W2989492704 hasConcept C158215666 @default.
- W2989492704 hasConcept C17744445 @default.
- W2989492704 hasConcept C191795146 @default.
- W2989492704 hasConcept C199539241 @default.
- W2989492704 hasConcept C2779581591 @default.
- W2989492704 hasConcept C28490314 @default.
- W2989492704 hasConcept C33923547 @default.
- W2989492704 hasConcept C41008148 @default.
- W2989492704 hasConcept C61797465 @default.
- W2989492704 hasConcept C62520636 @default.
- W2989492704 hasConcept C84462506 @default.
- W2989492704 hasConcept C9390403 @default.
- W2989492704 hasConceptScore W2989492704C104267543 @default.
- W2989492704 hasConceptScore W2989492704C105795698 @default.
- W2989492704 hasConceptScore W2989492704C11413529 @default.
- W2989492704 hasConceptScore W2989492704C121332964 @default.
- W2989492704 hasConceptScore W2989492704C139945424 @default.
- W2989492704 hasConceptScore W2989492704C158215666 @default.
- W2989492704 hasConceptScore W2989492704C17744445 @default.
- W2989492704 hasConceptScore W2989492704C191795146 @default.
- W2989492704 hasConceptScore W2989492704C199539241 @default.
- W2989492704 hasConceptScore W2989492704C2779581591 @default.
- W2989492704 hasConceptScore W2989492704C28490314 @default.
- W2989492704 hasConceptScore W2989492704C33923547 @default.
- W2989492704 hasConceptScore W2989492704C41008148 @default.
- W2989492704 hasConceptScore W2989492704C61797465 @default.
- W2989492704 hasConceptScore W2989492704C62520636 @default.
- W2989492704 hasConceptScore W2989492704C84462506 @default.
- W2989492704 hasConceptScore W2989492704C9390403 @default.
- W2989492704 hasLocation W29894927041 @default.
- W2989492704 hasOpenAccess W2989492704 @default.
- W2989492704 hasPrimaryLocation W29894927041 @default.
- W2989492704 hasRelatedWork W172332751 @default.
- W2989492704 hasRelatedWork W1970534163 @default.
- W2989492704 hasRelatedWork W1980770795 @default.
- W2989492704 hasRelatedWork W1991209043 @default.
- W2989492704 hasRelatedWork W207669395 @default.
- W2989492704 hasRelatedWork W2141217925 @default.
- W2989492704 hasRelatedWork W2170475872 @default.
- W2989492704 hasRelatedWork W2547916519 @default.
- W2989492704 hasRelatedWork W4292849997 @default.
- W2989492704 hasRelatedWork W1942639537 @default.
- W2989492704 isParatext "false" @default.
- W2989492704 isRetracted "false" @default.
- W2989492704 magId "2989492704" @default.
- W2989492704 workType "article" @default.