Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989533904> ?p ?o ?g. }
- W2989533904 endingPage "4601" @default.
- W2989533904 startingPage "4585" @default.
- W2989533904 abstract "Abstract. Ecosystem dynamic models are useful for understanding ecosystem characteristics over time and space because of their efficiency over direct field measurements and applicability to broad spatial extents. Their application, however, is challenging due to internal model uncertainties and complexities arising from distinct qualities of the ecosystems being analyzed. The sagebrush-steppe ecosystem in western North America, for example, has substantial spatial and temporal heterogeneity as well as variability due to anthropogenic disturbance, invasive species, climate change, and altered fire regimes, which collectively make modeling dynamic ecosystem processes difficult. Ecosystem Demography (EDv2.2) is a robust ecosystem dynamic model, initially developed for tropical forests, that simulates energy, water, and carbon fluxes at fine scales. Although EDv2.2 has since been tested on different ecosystems via development of different plant functional types (PFT), it still lacks a shrub PFT. In this study, we developed and parameterized a shrub PFT representative of sagebrush (Artemisia spp.) ecosystems in order to initialize and test it within EDv2.2, and to promote future broad-scale analysis of restoration activities, climate change, and fire regimes in the sagebrush-steppe ecosystem. Specifically, we parameterized the sagebrush PFT within EDv2.2 to estimate gross primary production (GPP) using data from two sagebrush study sites in the northern Great Basin. To accomplish this, we employed a three-tier approach. (1) To initially parameterize the sagebrush PFT, we fitted allometric relationships for sagebrush using field-collected data, information from existing sagebrush literature, and parameters from other land models. (2) To determine influential parameters in GPP prediction, we used a sensitivity analysis to identify the five most sensitive parameters. (3) To improve model performance and validate results, we optimized these five parameters using an exhaustive search method to estimate GPP, and compared results with observations from two eddy covariance (EC) sites in the study area. Our modeled results were encouraging, with reasonable fidelity to observed values, although some negative biases (i.e., seasonal underestimates of GPP) were apparent. Our finding on preliminary parameterization of the sagebrush shrub PFT is an important step towards subsequent studies on shrubland ecosystems using EDv2.2 or any other process-based ecosystem model." @default.
- W2989533904 created "2019-11-22" @default.
- W2989533904 creator A5010694911 @default.
- W2989533904 creator A5013535676 @default.
- W2989533904 creator A5015773542 @default.
- W2989533904 creator A5020270346 @default.
- W2989533904 creator A5036594698 @default.
- W2989533904 creator A5074851821 @default.
- W2989533904 creator A5082971411 @default.
- W2989533904 creator A5089990730 @default.
- W2989533904 date "2019-11-05" @default.
- W2989533904 modified "2023-10-01" @default.
- W2989533904 title "Developing and optimizing shrub parameters representing sagebrush (<i>Artemisia</i> spp.) ecosystems in the northern Great Basin using the Ecosystem Demography (EDv2.2) model" @default.
- W2989533904 cites W1007607234 @default.
- W2989533904 cites W1550367244 @default.
- W2989533904 cites W1574772297 @default.
- W2989533904 cites W1608631099 @default.
- W2989533904 cites W1721472034 @default.
- W2989533904 cites W1816623838 @default.
- W2989533904 cites W1894586054 @default.
- W2989533904 cites W1903751826 @default.
- W2989533904 cites W1930336116 @default.
- W2989533904 cites W1932499509 @default.
- W2989533904 cites W1949051345 @default.
- W2989533904 cites W1969062474 @default.
- W2989533904 cites W1971813093 @default.
- W2989533904 cites W1982814707 @default.
- W2989533904 cites W1986802129 @default.
- W2989533904 cites W1991064179 @default.
- W2989533904 cites W1992441102 @default.
- W2989533904 cites W1993410403 @default.
- W2989533904 cites W1997350062 @default.
- W2989533904 cites W2001947255 @default.
- W2989533904 cites W2006248680 @default.
- W2989533904 cites W2017915442 @default.
- W2989533904 cites W2019493625 @default.
- W2989533904 cites W2032915579 @default.
- W2989533904 cites W2033904036 @default.
- W2989533904 cites W2035092755 @default.
- W2989533904 cites W2040748182 @default.
- W2989533904 cites W2041334887 @default.
- W2989533904 cites W2058290555 @default.
- W2989533904 cites W2058364716 @default.
- W2989533904 cites W2059013572 @default.
- W2989533904 cites W2060756933 @default.
- W2989533904 cites W2069605192 @default.
- W2989533904 cites W2079193777 @default.
- W2989533904 cites W2082738528 @default.
- W2989533904 cites W2099145293 @default.
- W2989533904 cites W2099580584 @default.
- W2989533904 cites W2101989015 @default.
- W2989533904 cites W2104451846 @default.
- W2989533904 cites W2114695904 @default.
- W2989533904 cites W2115399650 @default.
- W2989533904 cites W2116952004 @default.
- W2989533904 cites W2124437404 @default.
- W2989533904 cites W2126860661 @default.
- W2989533904 cites W2132728450 @default.
- W2989533904 cites W2133555095 @default.
- W2989533904 cites W2134289299 @default.
- W2989533904 cites W2138763184 @default.
- W2989533904 cites W2146719438 @default.
- W2989533904 cites W2147746661 @default.
- W2989533904 cites W2151279668 @default.
- W2989533904 cites W2152468236 @default.
- W2989533904 cites W2166312616 @default.
- W2989533904 cites W2168870036 @default.
- W2989533904 cites W2171492170 @default.
- W2989533904 cites W2172148618 @default.
- W2989533904 cites W2175288858 @default.
- W2989533904 cites W2299731168 @default.
- W2989533904 cites W2338024616 @default.
- W2989533904 cites W2469467445 @default.
- W2989533904 cites W2503041438 @default.
- W2989533904 cites W2527215013 @default.
- W2989533904 cites W2556940575 @default.
- W2989533904 cites W2561892610 @default.
- W2989533904 cites W2753947618 @default.
- W2989533904 cites W2755793808 @default.
- W2989533904 cites W2765898674 @default.
- W2989533904 cites W2786425804 @default.
- W2989533904 cites W2789111786 @default.
- W2989533904 cites W2888712670 @default.
- W2989533904 cites W2895986199 @default.
- W2989533904 doi "https://doi.org/10.5194/gmd-12-4585-2019" @default.
- W2989533904 hasPublicationYear "2019" @default.
- W2989533904 type Work @default.
- W2989533904 sameAs 2989533904 @default.
- W2989533904 citedByCount "3" @default.
- W2989533904 countsByYear W29895339042021 @default.
- W2989533904 countsByYear W29895339042023 @default.
- W2989533904 crossrefType "journal-article" @default.
- W2989533904 hasAuthorship W2989533904A5010694911 @default.
- W2989533904 hasAuthorship W2989533904A5013535676 @default.
- W2989533904 hasAuthorship W2989533904A5015773542 @default.
- W2989533904 hasAuthorship W2989533904A5020270346 @default.
- W2989533904 hasAuthorship W2989533904A5036594698 @default.
- W2989533904 hasAuthorship W2989533904A5074851821 @default.