Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989580517> ?p ?o ?g. }
- W2989580517 abstract "We present MixNMatch, a conditional generative model that learns to disentangle and encode background, object pose, shape, and texture from real images with minimal supervision, for mix-and-match image generation. We build upon FineGAN, an unconditional generative model, to learn the desired disentanglement and image generator, and leverage adversarial joint image-code distribution matching to learn the latent factor encoders. MixNMatch requires bounding boxes during training to model background, but requires no other supervision. Through extensive experiments, we demonstrate MixNMatch's ability to accurately disentangle, encode, and combine multiple factors for mix-and-match image generation, including sketch2color, cartoon2img, and img2gif applications. Our code/models/demo can be found at https://github.com/Yuheng-Li/MixNMatch" @default.
- W2989580517 created "2019-12-05" @default.
- W2989580517 creator A5026274651 @default.
- W2989580517 creator A5030649976 @default.
- W2989580517 creator A5045669078 @default.
- W2989580517 creator A5082091356 @default.
- W2989580517 date "2019-11-26" @default.
- W2989580517 modified "2023-09-23" @default.
- W2989580517 title "MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation" @default.
- W2989580517 cites W1797268635 @default.
- W2989580517 cites W2013029404 @default.
- W2989580517 cites W2099471712 @default.
- W2989580517 cites W2138011018 @default.
- W2989580517 cites W2337374958 @default.
- W2989580517 cites W2548275288 @default.
- W2989580517 cites W2737047298 @default.
- W2989580517 cites W2766091292 @default.
- W2989580517 cites W2771558241 @default.
- W2989580517 cites W2794512294 @default.
- W2989580517 cites W2797046819 @default.
- W2989580517 cites W2798404873 @default.
- W2989580517 cites W2807725536 @default.
- W2989580517 cites W2808220054 @default.
- W2989580517 cites W2883861033 @default.
- W2989580517 cites W2890663137 @default.
- W2989580517 cites W2893749619 @default.
- W2989580517 cites W2901791883 @default.
- W2989580517 cites W2903141607 @default.
- W2989580517 cites W2920879895 @default.
- W2989580517 cites W2922461432 @default.
- W2989580517 cites W2949864127 @default.
- W2989580517 cites W2949999304 @default.
- W2989580517 cites W2951311921 @default.
- W2989580517 cites W2962754210 @default.
- W2989580517 cites W2962770929 @default.
- W2989580517 cites W2962808998 @default.
- W2989580517 cites W2962879692 @default.
- W2989580517 cites W2962935987 @default.
- W2989580517 cites W2963045453 @default.
- W2989580517 cites W2963073614 @default.
- W2989580517 cites W2963092440 @default.
- W2989580517 cites W2963129901 @default.
- W2989580517 cites W2963226019 @default.
- W2989580517 cites W2963265008 @default.
- W2989580517 cites W2963373786 @default.
- W2989580517 cites W2963567641 @default.
- W2989580517 cites W2963890275 @default.
- W2989580517 cites W2963896050 @default.
- W2989580517 cites W2963966654 @default.
- W2989580517 cites W2963981733 @default.
- W2989580517 cites W2964168187 @default.
- W2989580517 cites W2970241862 @default.
- W2989580517 cites W2986341494 @default.
- W2989580517 cites W3159890710 @default.
- W2989580517 doi "https://doi.org/10.48550/arxiv.1911.11758" @default.
- W2989580517 hasPublicationYear "2019" @default.
- W2989580517 type Work @default.
- W2989580517 sameAs 2989580517 @default.
- W2989580517 citedByCount "1" @default.
- W2989580517 countsByYear W29895805172020 @default.
- W2989580517 crossrefType "posted-content" @default.
- W2989580517 hasAuthorship W2989580517A5026274651 @default.
- W2989580517 hasAuthorship W2989580517A5030649976 @default.
- W2989580517 hasAuthorship W2989580517A5045669078 @default.
- W2989580517 hasAuthorship W2989580517A5082091356 @default.
- W2989580517 hasBestOaLocation W29895805171 @default.
- W2989580517 hasConcept C104317684 @default.
- W2989580517 hasConcept C105795698 @default.
- W2989580517 hasConcept C111919701 @default.
- W2989580517 hasConcept C115961682 @default.
- W2989580517 hasConcept C118505674 @default.
- W2989580517 hasConcept C121332964 @default.
- W2989580517 hasConcept C125411270 @default.
- W2989580517 hasConcept C153083717 @default.
- W2989580517 hasConcept C153180895 @default.
- W2989580517 hasConcept C154945302 @default.
- W2989580517 hasConcept C163258240 @default.
- W2989580517 hasConcept C165064840 @default.
- W2989580517 hasConcept C167966045 @default.
- W2989580517 hasConcept C177264268 @default.
- W2989580517 hasConcept C185592680 @default.
- W2989580517 hasConcept C199360897 @default.
- W2989580517 hasConcept C2776760102 @default.
- W2989580517 hasConcept C2780992000 @default.
- W2989580517 hasConcept C31972630 @default.
- W2989580517 hasConcept C33923547 @default.
- W2989580517 hasConcept C39890363 @default.
- W2989580517 hasConcept C41008148 @default.
- W2989580517 hasConcept C55493867 @default.
- W2989580517 hasConcept C62520636 @default.
- W2989580517 hasConcept C63584917 @default.
- W2989580517 hasConcept C66746571 @default.
- W2989580517 hasConceptScore W2989580517C104317684 @default.
- W2989580517 hasConceptScore W2989580517C105795698 @default.
- W2989580517 hasConceptScore W2989580517C111919701 @default.
- W2989580517 hasConceptScore W2989580517C115961682 @default.
- W2989580517 hasConceptScore W2989580517C118505674 @default.
- W2989580517 hasConceptScore W2989580517C121332964 @default.
- W2989580517 hasConceptScore W2989580517C125411270 @default.
- W2989580517 hasConceptScore W2989580517C153083717 @default.