Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989589450> ?p ?o ?g. }
- W2989589450 endingPage "2436" @default.
- W2989589450 startingPage "2425" @default.
- W2989589450 abstract "Different from previous imputation methods which impute missing values in the incomplete samples by using the information in the complete samples, this paper proposes a Date-drive Incremental imputation Model, DIM for short, which uses all available information in the data set to impute missing values economically, effectively, orderly, and iteratively. To this end, we propose a scoring rule to rank the missing features by taking into account both the economical criterion and the effective imputation information. The economical criterion takes both the imputation cost and the discriminative ability of the feature into account, while the effective imputation information enables to use all observed information in the data set including the imputed missing values to impute the left missing values. During the imputation process, our DIM first detects the neednot-impute samples for reducing the imputation cost and noise, and then selects the missing features with the top rank to impute first. The imputation process orderly imputes the missing features until all missing values are imputed or the imputation cost is exhausted. Experimental results on UCI data sets demonstrated the advantages of our proposed DIM, compared to the comparison methods, in terms of prediction accuracy and classification accuracy." @default.
- W2989589450 created "2019-12-05" @default.
- W2989589450 creator A5037340898 @default.
- W2989589450 creator A5059458833 @default.
- W2989589450 creator A5080788081 @default.
- W2989589450 creator A5081283168 @default.
- W2989589450 date "2021-06-01" @default.
- W2989589450 modified "2023-10-17" @default.
- W2989589450 title "Efficient Utilization of Missing Data in Cost-Sensitive Learning" @default.
- W2989589450 cites W1598553907 @default.
- W2989589450 cites W1849547295 @default.
- W2989589450 cites W1875360179 @default.
- W2989589450 cites W1947644301 @default.
- W2989589450 cites W1971356345 @default.
- W2989589450 cites W1984558911 @default.
- W2989589450 cites W1988176704 @default.
- W2989589450 cites W1990994240 @default.
- W2989589450 cites W1996505782 @default.
- W2989589450 cites W2036867245 @default.
- W2989589450 cites W2038030840 @default.
- W2989589450 cites W2046793639 @default.
- W2989589450 cites W2047370120 @default.
- W2989589450 cites W2053239431 @default.
- W2989589450 cites W2096742462 @default.
- W2989589450 cites W2101416352 @default.
- W2989589450 cites W2108795097 @default.
- W2989589450 cites W2112280891 @default.
- W2989589450 cites W2115204137 @default.
- W2989589450 cites W2127395777 @default.
- W2989589450 cites W2127615881 @default.
- W2989589450 cites W2136211363 @default.
- W2989589450 cites W2163874082 @default.
- W2989589450 cites W2165742564 @default.
- W2989589450 cites W2304996025 @default.
- W2989589450 cites W2335437633 @default.
- W2989589450 cites W2470282262 @default.
- W2989589450 cites W2480680997 @default.
- W2989589450 cites W2574388714 @default.
- W2989589450 cites W2606436201 @default.
- W2989589450 cites W2614818206 @default.
- W2989589450 cites W2739250163 @default.
- W2989589450 cites W2763434300 @default.
- W2989589450 cites W2769509511 @default.
- W2989589450 cites W2809701111 @default.
- W2989589450 cites W2883604340 @default.
- W2989589450 cites W2885309785 @default.
- W2989589450 cites W2895210058 @default.
- W2989589450 cites W2904458925 @default.
- W2989589450 cites W2907036540 @default.
- W2989589450 cites W2921469220 @default.
- W2989589450 cites W2940568479 @default.
- W2989589450 cites W2950179012 @default.
- W2989589450 cites W2950480314 @default.
- W2989589450 cites W2962861647 @default.
- W2989589450 cites W2984592067 @default.
- W2989589450 cites W3101272699 @default.
- W2989589450 cites W4232122439 @default.
- W2989589450 doi "https://doi.org/10.1109/tkde.2019.2956530" @default.
- W2989589450 hasPublicationYear "2021" @default.
- W2989589450 type Work @default.
- W2989589450 sameAs 2989589450 @default.
- W2989589450 citedByCount "45" @default.
- W2989589450 countsByYear W29895894502020 @default.
- W2989589450 countsByYear W29895894502021 @default.
- W2989589450 countsByYear W29895894502022 @default.
- W2989589450 countsByYear W29895894502023 @default.
- W2989589450 crossrefType "journal-article" @default.
- W2989589450 hasAuthorship W2989589450A5037340898 @default.
- W2989589450 hasAuthorship W2989589450A5059458833 @default.
- W2989589450 hasAuthorship W2989589450A5080788081 @default.
- W2989589450 hasAuthorship W2989589450A5081283168 @default.
- W2989589450 hasConcept C105795698 @default.
- W2989589450 hasConcept C119857082 @default.
- W2989589450 hasConcept C124101348 @default.
- W2989589450 hasConcept C154945302 @default.
- W2989589450 hasConcept C33923547 @default.
- W2989589450 hasConcept C41008148 @default.
- W2989589450 hasConcept C58041806 @default.
- W2989589450 hasConcept C9357733 @default.
- W2989589450 hasConcept C97931131 @default.
- W2989589450 hasConceptScore W2989589450C105795698 @default.
- W2989589450 hasConceptScore W2989589450C119857082 @default.
- W2989589450 hasConceptScore W2989589450C124101348 @default.
- W2989589450 hasConceptScore W2989589450C154945302 @default.
- W2989589450 hasConceptScore W2989589450C33923547 @default.
- W2989589450 hasConceptScore W2989589450C41008148 @default.
- W2989589450 hasConceptScore W2989589450C58041806 @default.
- W2989589450 hasConceptScore W2989589450C9357733 @default.
- W2989589450 hasConceptScore W2989589450C97931131 @default.
- W2989589450 hasFunder F4320321001 @default.
- W2989589450 hasIssue "6" @default.
- W2989589450 hasLocation W29895894501 @default.
- W2989589450 hasOpenAccess W2989589450 @default.
- W2989589450 hasPrimaryLocation W29895894501 @default.
- W2989589450 hasRelatedWork W1973721774 @default.
- W2989589450 hasRelatedWork W2096555119 @default.
- W2989589450 hasRelatedWork W2541565311 @default.
- W2989589450 hasRelatedWork W2751555317 @default.