Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989592344> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2989592344 endingPage "17" @default.
- W2989592344 startingPage "6" @default.
- W2989592344 abstract "The paper analyses and speculates on what opportunities and challenges will arise from the introduction of learning algorithms (machine learning, neural networks, etc.) in architectural and urban design. The penetration of such class of algorithms in cities and design disciplines is rapid and profound increasing both the thirst for gathering ever larger and more accurate datasets and raising the prospect of automating tasks currently performed by humans. Whilst it is understood that learning algorithms are essential tools to analyse large datasets, design disciplines have paid far less attention to how such processes are carried out, how spatial data are reformatted by algorithms which largely operate on statistical bases and, most importantly, what image of the city emerges from such processes. To unravel the complexity of the issue, it is first necessary to retrace the ideas informing the emergence of numerical procedures at beginning of the twentieth century and Artificial Intelligence in the 1950's as they allow us to project a different paradigm of how space can be analysed, structured, and changed. Finally, the paper will offer some points for speculation and further reflection on how the methods put forward through learning algorithms compare to current approaches to digital design; this will foreground their disruptive potential for a radical transformation of urban design, one that could be deployed to tackle some of the most pressing urban issue." @default.
- W2989592344 created "2019-12-05" @default.
- W2989592344 creator A5036004942 @default.
- W2989592344 date "2019-11-24" @default.
- W2989592344 modified "2023-09-25" @default.
- W2989592344 title "Learning Algorithms, Design, and computed space" @default.
- W2989592344 cites W1562317776 @default.
- W2989592344 cites W2013076679 @default.
- W2989592344 cites W2893277058 @default.
- W2989592344 doi "https://doi.org/10.17831/enq:arcc.v16i2.1058" @default.
- W2989592344 hasPublicationYear "2019" @default.
- W2989592344 type Work @default.
- W2989592344 sameAs 2989592344 @default.
- W2989592344 citedByCount "0" @default.
- W2989592344 crossrefType "journal-article" @default.
- W2989592344 hasAuthorship W2989592344A5036004942 @default.
- W2989592344 hasBestOaLocation W29895923441 @default.
- W2989592344 hasConcept C111919701 @default.
- W2989592344 hasConcept C11413529 @default.
- W2989592344 hasConcept C119857082 @default.
- W2989592344 hasConcept C154945302 @default.
- W2989592344 hasConcept C2522767166 @default.
- W2989592344 hasConcept C2777212361 @default.
- W2989592344 hasConcept C2778572836 @default.
- W2989592344 hasConcept C41008148 @default.
- W2989592344 hasConcept C50644808 @default.
- W2989592344 hasConceptScore W2989592344C111919701 @default.
- W2989592344 hasConceptScore W2989592344C11413529 @default.
- W2989592344 hasConceptScore W2989592344C119857082 @default.
- W2989592344 hasConceptScore W2989592344C154945302 @default.
- W2989592344 hasConceptScore W2989592344C2522767166 @default.
- W2989592344 hasConceptScore W2989592344C2777212361 @default.
- W2989592344 hasConceptScore W2989592344C2778572836 @default.
- W2989592344 hasConceptScore W2989592344C41008148 @default.
- W2989592344 hasConceptScore W2989592344C50644808 @default.
- W2989592344 hasIssue "2" @default.
- W2989592344 hasLocation W29895923441 @default.
- W2989592344 hasOpenAccess W2989592344 @default.
- W2989592344 hasPrimaryLocation W29895923441 @default.
- W2989592344 hasRelatedWork W2386387936 @default.
- W2989592344 hasRelatedWork W2961085424 @default.
- W2989592344 hasRelatedWork W3046775127 @default.
- W2989592344 hasRelatedWork W4205958290 @default.
- W2989592344 hasRelatedWork W4285260836 @default.
- W2989592344 hasRelatedWork W4286629047 @default.
- W2989592344 hasRelatedWork W4306321456 @default.
- W2989592344 hasRelatedWork W4306674287 @default.
- W2989592344 hasRelatedWork W1629725936 @default.
- W2989592344 hasRelatedWork W4224009465 @default.
- W2989592344 hasVolume "16" @default.
- W2989592344 isParatext "false" @default.
- W2989592344 isRetracted "false" @default.
- W2989592344 magId "2989592344" @default.
- W2989592344 workType "article" @default.