Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989597584> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2989597584 endingPage "88" @default.
- W2989597584 startingPage "76" @default.
- W2989597584 abstract "Future Science Book SeriesHot Topics in Metabolomics: Food and Nutrition Applications of metabolomics to food processingRomina Beleggia, Donatella Bianca Maria Ficco & Mariagiovanna FragassoRomina BeleggiaRomina Beleggia graduated in chemistry at Camerino University (Italy) and she subsequently obtained her PhD in foodstuff biotechnologies at the Agronomy Department of the University of Foggia (Italy). Currently, she holds a postdoctoral position at the Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Cerealicoltura (CRA-CER) in Foggia (Italy). Her activity is focused on the development of methods for metabolomics analysis of cereal-based foods, with particular attention on metabolite profiling of cereals and derivate products by GC–MS platform, in order to identify and quantify the higher number of primary metabolites (polar and nonpolar).Search for more papers by this author, Donatella Bianca Maria FiccoDonatella Bianca Maria Ficco graduated in food science and technologies. She received PhD in food science and pediatric nutrition, dealing with the phenotyping of quality and nutraceutical characters on durum wheat cultivars and during processing. During a 4800-h training scholarship for ‘experienced specialists in plant breeding/biotechnology in support of the National Durum Wheat Industry’, she studied the genetic basis of agronomically important traits in durum wheat, in relation to the metabolome in biotic and abiotic stresses, identifying desired alleles in genes to transfer into more recent elite varieties. She is now a researcher in metabolomics at the CRA-CER.Search for more papers by this author & Mariagiovanna FragassoMariagiovanna Fragasso has more than 7 years of experience in food chemistry. She gained a degree in food sciences and technologies and started a Master’s degree in quality systems in 2007. Following a PhD in food biotechnologies (Foggia University, 2010), she took up a postdoctoral position in the same university. In 2011, she held a postdoctoral position at the Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di Ricerca per la Vitivinicoltura (CRA-UTV) in Turi, Italy. She currently holds a postdoctoral position at the CRA-CER, as a member of the Metabolomic Group.Search for more papers by this authorPublished Online:17 Dec 2013https://doi.org/10.4155/ebo.13.451AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinkedInReddit View chapterAbstract: Food is fundamental to our livelihood. Besides its major components of starch, protein and fat, food contains a multitude of less-abundant metabolites, some of which have relevant organoleptic and nutritional features. Although fresh foods are important sources of essential nutrients, the global population is also now eating increasing amounts of processed foods. References1 Shepherd LVT , Fraser PD , Stewart D . Metabolomics: a second-generation platform for food and crop analysis . Bioanalysis 3 , 1143 – 1159 (2011) . Crossref, Medline, CAS, Google Scholar2 Capanoglu E , Beekwilder L , Boyacioglu D , Hall R , de Vos R . Changes in antioxidant and metabolite profiles during production of tomato paste . J. Agric. Food Chem. 56 , 964 – 973 (2008) . Crossref, Medline, CAS, Google Scholar3 Osorio S , Tohge T , Fernie AR . Application of metabolomics profiling for identifying valuable traits in tomato . CAB Reviews: Perspect. Agric. Vet. Sci. Nutr. Nat. Res. 4 (024) , 1 – 9 (2009) . Google Scholar4 Ali K , Maltese F , Choi YH , Verpoorte R . Metabolic constituents of grapewine and grape-derived products . Phytochem. Rev. 9 , 357 – 378 (2010) . Crossref, Medline, CAS, Google Scholar5 Skogerson K , Harrigan GG , Reynolds TL et al. Impact of genetics and environment on the metabolite composition of maize grain . J. Agric. Food Chem. 58 , 3600 – 3610 (2010) . Crossref, Medline, CAS, Google Scholar6 Wirth J , Poletti S , Aeschlimann B et al. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin . Plant Biotechnol. J. 7 , 631 – 644 (2009) . Crossref, Medline, CAS, Google Scholar7 Mazzei P , Piccolo A . H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk . Food Chem. 132 , 1620 – 1627 (2012) . Crossref, Medline, CAS, Google Scholar8 Röhlig RM , Engel KH . Influence of the input system (conventional versus organic farming) on the metabolite profiles of maize (Zea mays) kernels . J. Agric. Food Chem. 58 , 3022 – 3030 (2010) . Crossref, Medline, Google Scholar9 Frank T , Reichardt B , Shu Q , Engel KH . Metabolite profiling of colored rice (Oryza sativa L.) grains . J. Cereal Sci. 55 , 112 – 119 (2012) . Crossref, CAS, Google Scholar10 Högy P , Keck M , Niehaus K , Franzaring J , Fangmeier A . Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain . J. Cereal Sci. 52 , 215 – 220 (2010) . Crossref, Google Scholar11 Beleggia R , Platani C , Papa R et al. Metabolomics and food processing: from semolina to pasta . J. Agric. Food Chem. 59 , 9366 – 9377 (2011) . Crossref, Medline, CAS, Google Scholar12 De Noni I , Pagani MA . Coking properties and heat damage of dried pasta as influenced by raw material characteristics and processing conditions . Crit. Rev. Food Sci. Nutr. 50 , 465 – 472 (2010) . Crossref, Medline, Google Scholar13 Baxter JH . Free amino acid stability in reducing sugar systems . J. Food Sci. 60 , 405 – 408 (1995) . Crossref, CAS, Google Scholar14 Acquistucci R . Influence of Maillard reaction on protein modification and colour development in pasta. Comparison of different drying conditions . Lebensm. Wiss. Technol. 33 , 48 – 52 (2000) . Crossref, CAS, Google Scholar15 Beleggia R , Platani C , Spano G , Monteleone M , Cattivelli L . Metabolic profiling and analysis of volatile composition of durum wheat semolina and pasta . J. Cereal Sci. 49 , 301 – 309 (2009) . Crossref, CAS, Google Scholar16 Verhoeven HA , Jonker H , De Vos RCH , Hall RD . Solid phase micro-extraction GC–MS analysis of natural volatile components in melon and rice . Methods Mol. Biol. 860 , 85 – 99 (2012) . Crossref, Medline, CAS, Google Scholar17 Choi HK , Yoon JH , Kim YS , Kwon DY . Metabolomic profiling of Cheonggukjang during fermentation by H-1 NMR spectrometry and principal components analysis . Process Biochem. 42 (2) , 263 – 266 (2007) . Crossref, CAS, Google Scholar18 Frank T , Scholz B , Peter S , Engel KH . Metabolite profiling of barley: influence of the malting process . Food Chem. 124 , 948 – 957 (2011) . Crossref, CAS, Google Scholar19 Gorzolka K , Lissel M , Kessler N , Loch-Ahring S , Niehaus K . Metabolite fingerprinting of barley whole seeds, endosperms, and embryos during industrial malting . J. Biotech. 159 , 177 – 187 (2012) . Crossref, Medline, CAS, Google Scholar20 Capanoglu E , Beekwilder J , Boyacioglu D , De Vos RCH , Hall RD . The effect of industrial food processing on potentially health-beneficial tomato antioxidants . Crit. Rev. Food Sci. Nutr. 50 , 919 – 930 (2010) . Crossref, Medline, CAS, Google Scholar21 Tikunov Y , Lommen A , de Vos CHR et al. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles . Plant Physiol. 139 , 1125 – 1137 (2005) . Crossref, Medline, CAS, Google Scholar22 Moco S , Bino RJ , Vorst O et al. A liquid chromatography-mass spectrometry-based metabolome database for tomato . Plant Physiol. 141 , 1205 – 1218 (2006) . Crossref, Medline, CAS, Google Scholar23 Moco S , Forshed J , de Vos CHR , Bino RJ , Vervoort J . Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography–mass spectrometry and nuclear magnetic resonance . Metabolomics 4 , 202 – 215 (2008) . Crossref, CAS, Google Scholar24 Schauer N , Semel Y , Roessner U et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement . Nat. Biotech. 24 , 447 – 454 (2006) . Crossref, Medline, CAS, Google Scholar25 de Vos RCH , Moco S , Lommen A , Keurentjes JJ , Bino RJ , Hall RD . Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry . Nat. Protocols 2 , 778 – 791 (2007) . Crossref, Medline, CAS, Google Scholar26 Thissen U , Coulier L , Overkamp KM et al. A proper metabolomics strategy supports efficient food quality improvement: a case study on tomato sensory properties . Food Qual. Prefer. 22 , 499 – 506 (2011) . Crossref, Google Scholar27 Dais P , Hatzakis E . Quality assessment and authentication of virgin olive oil by NMR spectroscopy: a critical review . Anal. Chim. Acta. 765 , 1 – 27 (2013) . Crossref, Medline, CAS, Google Scholar28 Alagna F , Mariotti R , Panara F et al. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development . BMC Plant. Biol. 12 , 162 (2012) . Crossref, Medline, CAS, Google Scholar29 Cavaliere B , De Nino A , Hayet F et al. A metabolomic approach to the evaluation of the origin of extra virgin olive oil: a convenient statistical treatment of mass spectrometric analytical data . J. Agric. Food Chem. 55 , 1454 – 1462 (2007) . Crossref, Medline, CAS, Google Scholar30 Ochi H , Naito H , Iwatsuki K , Bamba T , Fukusaki E . Metabolomics-based component profiling of hard and semi-hard natural cheeses with gas chromatography/time-of-flight-mass spectrometry, and its application to sensory predictive modeling . J. Biosci. Bioeng. 113 (6) , 751 – 758 (2012) . Crossref, Medline, CAS, Google Scholar31 Andersen LT , Schlichtherle-Cerny H , Ardo Y . Hydrophilic di- and tripeptides are not a precondition for savoury flavour in mature cheddar cheese . Dairy Sci. Technol. 88 , 467 – 475 (2008) . Crossref, CAS, Google Scholar32 Leroy F , De Vuyst L . Lactic acid bacteria as functional starter cultures for the food fermentation industry . Trends Food Sci. Technol. 15 (2) , 67 – 78 (2004) . Crossref, CAS, Google Scholar33 Rodrigues D , Santos CH , Rocha-Santos TAP , Gomes AM , Goodfellow BJ , Freitas AC . Metabolic profiling of potential probiotic or synbiotic cheeses by nuclear magnetic resonance (NMR) spectroscopy . J. Agric. Food Chem. 59 , 4955 – 4961 (2011) . Crossref, Medline, CAS, Google Scholar34 Philips M , Kailasapathy K , Tran L . Viability of commercial probiotic cheese cultures (L. acidophilus, Bifidobacterium sp., L. casei, L. paracasei and L. rhamnosus) in Cheddar cheese . Int. J. Food Microbiol. 108 , 276 – 280 (2006) . Crossref, Medline, Google Scholar35 Kalavrouzioti I , Hatzikamari M , Litopoulou-Tzanetaki E , Tzanetakis N . Production of hard cheese from caprine milk by the use of two types of probiotic cultures as adjuncts . Int. J. Dairy Technol. 58 , 31 – 38 (2005) . Crossref, Google Scholar36 Kilic GB , Kuleas-an H , Eralp I , Kaharan AG . Manufacture of Turkish Beyaz cheese added with probiotic strains . LWT Food Sci. Technol. 42 , 1003 – 1008 (2009) . Crossref, CAS, Google ScholarWebsite101 Regulation (EC) no. 178/2000 of the European Parliament and of the Council of 28 January 2002. Official Journal of the European Communities, pages 1–24. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:031:0001:0024:EN:PDF Google ScholarFiguresReferencesRelatedDetailsCited ByMetabolomics Provides Valuable Insight for the Study of Durum Wheat: A Review4 March 2019 | Journal of Agricultural and Food Chemistry, Vol. 67, No. 11 Hot Topics in Metabolomics: Food and NutritionMetrics Downloaded 33 times History Published online 17 December 2013 Published in print December 2013 Information© Future Science Ltd© Future Science LtdPDF download" @default.
- W2989597584 created "2019-12-05" @default.
- W2989597584 creator A5008328340 @default.
- W2989597584 creator A5020247662 @default.
- W2989597584 creator A5078201091 @default.
- W2989597584 date "2013-12-01" @default.
- W2989597584 modified "2023-09-26" @default.
- W2989597584 title "Applications of metabolomics to food processing" @default.
- W2989597584 cites W1574408227 @default.
- W2989597584 cites W1964244511 @default.
- W2989597584 cites W1964338739 @default.
- W2989597584 cites W1967346636 @default.
- W2989597584 cites W1973836730 @default.
- W2989597584 cites W1993444958 @default.
- W2989597584 cites W1995275982 @default.
- W2989597584 cites W1999834925 @default.
- W2989597584 cites W2000933757 @default.
- W2989597584 cites W2002161368 @default.
- W2989597584 cites W2007844491 @default.
- W2989597584 cites W2015450289 @default.
- W2989597584 cites W2034668361 @default.
- W2989597584 cites W2035206191 @default.
- W2989597584 cites W2046342775 @default.
- W2989597584 cites W2048843367 @default.
- W2989597584 cites W2063762505 @default.
- W2989597584 cites W2068154219 @default.
- W2989597584 cites W2073131304 @default.
- W2989597584 cites W2075593874 @default.
- W2989597584 cites W2091466141 @default.
- W2989597584 cites W2093417530 @default.
- W2989597584 cites W2093912005 @default.
- W2989597584 cites W2094031788 @default.
- W2989597584 cites W2098469045 @default.
- W2989597584 cites W2111158625 @default.
- W2989597584 cites W2116444522 @default.
- W2989597584 cites W2125431393 @default.
- W2989597584 cites W2132238597 @default.
- W2989597584 cites W2140089570 @default.
- W2989597584 cites W2159035756 @default.
- W2989597584 cites W2159249100 @default.
- W2989597584 cites W2166360158 @default.
- W2989597584 cites W2167961554 @default.
- W2989597584 cites W2168400441 @default.
- W2989597584 cites W2170294018 @default.
- W2989597584 doi "https://doi.org/10.4155/ebo.13.451" @default.
- W2989597584 hasPublicationYear "2013" @default.
- W2989597584 type Work @default.
- W2989597584 sameAs 2989597584 @default.
- W2989597584 citedByCount "1" @default.
- W2989597584 countsByYear W29895975842019 @default.
- W2989597584 crossrefType "other" @default.
- W2989597584 hasAuthorship W2989597584A5008328340 @default.
- W2989597584 hasAuthorship W2989597584A5020247662 @default.
- W2989597584 hasAuthorship W2989597584A5078201091 @default.
- W2989597584 hasConcept C21565614 @default.
- W2989597584 hasConcept C2522767166 @default.
- W2989597584 hasConcept C41008148 @default.
- W2989597584 hasConcept C60644358 @default.
- W2989597584 hasConcept C70721500 @default.
- W2989597584 hasConcept C86803240 @default.
- W2989597584 hasConceptScore W2989597584C21565614 @default.
- W2989597584 hasConceptScore W2989597584C2522767166 @default.
- W2989597584 hasConceptScore W2989597584C41008148 @default.
- W2989597584 hasConceptScore W2989597584C60644358 @default.
- W2989597584 hasConceptScore W2989597584C70721500 @default.
- W2989597584 hasConceptScore W2989597584C86803240 @default.
- W2989597584 hasLocation W29895975841 @default.
- W2989597584 hasOpenAccess W2989597584 @default.
- W2989597584 hasPrimaryLocation W29895975841 @default.
- W2989597584 hasRelatedWork W2009365322 @default.
- W2989597584 hasRelatedWork W2018243915 @default.
- W2989597584 hasRelatedWork W2021703583 @default.
- W2989597584 hasRelatedWork W2066005086 @default.
- W2989597584 hasRelatedWork W2071257957 @default.
- W2989597584 hasRelatedWork W2107751952 @default.
- W2989597584 hasRelatedWork W2152476191 @default.
- W2989597584 hasRelatedWork W2483024785 @default.
- W2989597584 hasRelatedWork W2890957471 @default.
- W2989597584 hasRelatedWork W1538574688 @default.
- W2989597584 isParatext "false" @default.
- W2989597584 isRetracted "false" @default.
- W2989597584 magId "2989597584" @default.
- W2989597584 workType "other" @default.