Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989611399> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2989611399 endingPage "032065" @default.
- W2989611399 startingPage "032065" @default.
- W2989611399 abstract "Abstract The article considers the basic methods of machine learning applied by individual entrepreneurs within the framework of transition to digital production to improve the efficiency of data processing, classification of existing and would-be customers and their subsequent work with them. The main attention is paid to the problem of increasing the effectiveness of methods of machine learning applied for solving the current questions. Areas of application of technology are shown. The peculiarities of machine learning are briefly analyzed. The main features and prospects of the development of Machine Learning services are shown on the basis of the concept of a step-by-step combination of the methods under consideration. One of the main algorithms for working with data is analyzed; its main features, scope and procedure are described. Recommendations are given for the further use of machine learning algorithms. The role of machine learning in the development of modern science and industry is analyzed, the main tendencies of the industry development are determined, and the practical application of big data is shown. As part of the transition to Industry 4.0, the main areas of application of machine learning, big data, Artificial Intelligence and their relations with the corresponding fields of science and production are described. The article also offers a review of the application of Artificial Intelligence and machine learning in particular in the context of the transition to digitalization and the issues of individual entrepreneurship." @default.
- W2989611399 created "2019-12-05" @default.
- W2989611399 creator A5014378492 @default.
- W2989611399 creator A5028498295 @default.
- W2989611399 creator A5055042879 @default.
- W2989611399 date "2019-10-01" @default.
- W2989611399 modified "2023-10-10" @default.
- W2989611399 title "Analysis of machine learning methods to improve efficiency of big data processing in Industry 4.0" @default.
- W2989611399 cites W2461547680 @default.
- W2989611399 cites W2767731840 @default.
- W2989611399 cites W2777878993 @default.
- W2989611399 doi "https://doi.org/10.1088/1742-6596/1333/3/032065" @default.
- W2989611399 hasPublicationYear "2019" @default.
- W2989611399 type Work @default.
- W2989611399 sameAs 2989611399 @default.
- W2989611399 citedByCount "12" @default.
- W2989611399 countsByYear W29896113992020 @default.
- W2989611399 countsByYear W29896113992021 @default.
- W2989611399 countsByYear W29896113992023 @default.
- W2989611399 crossrefType "journal-article" @default.
- W2989611399 hasAuthorship W2989611399A5014378492 @default.
- W2989611399 hasAuthorship W2989611399A5028498295 @default.
- W2989611399 hasAuthorship W2989611399A5055042879 @default.
- W2989611399 hasBestOaLocation W29896113991 @default.
- W2989611399 hasConcept C119857082 @default.
- W2989611399 hasConcept C124101348 @default.
- W2989611399 hasConcept C127413603 @default.
- W2989611399 hasConcept C13736549 @default.
- W2989611399 hasConcept C139719470 @default.
- W2989611399 hasConcept C151730666 @default.
- W2989611399 hasConcept C154945302 @default.
- W2989611399 hasConcept C162324750 @default.
- W2989611399 hasConcept C199360897 @default.
- W2989611399 hasConcept C2522767166 @default.
- W2989611399 hasConcept C2778012447 @default.
- W2989611399 hasConcept C2778348673 @default.
- W2989611399 hasConcept C2779343474 @default.
- W2989611399 hasConcept C41008148 @default.
- W2989611399 hasConcept C75684735 @default.
- W2989611399 hasConcept C86803240 @default.
- W2989611399 hasConceptScore W2989611399C119857082 @default.
- W2989611399 hasConceptScore W2989611399C124101348 @default.
- W2989611399 hasConceptScore W2989611399C127413603 @default.
- W2989611399 hasConceptScore W2989611399C13736549 @default.
- W2989611399 hasConceptScore W2989611399C139719470 @default.
- W2989611399 hasConceptScore W2989611399C151730666 @default.
- W2989611399 hasConceptScore W2989611399C154945302 @default.
- W2989611399 hasConceptScore W2989611399C162324750 @default.
- W2989611399 hasConceptScore W2989611399C199360897 @default.
- W2989611399 hasConceptScore W2989611399C2522767166 @default.
- W2989611399 hasConceptScore W2989611399C2778012447 @default.
- W2989611399 hasConceptScore W2989611399C2778348673 @default.
- W2989611399 hasConceptScore W2989611399C2779343474 @default.
- W2989611399 hasConceptScore W2989611399C41008148 @default.
- W2989611399 hasConceptScore W2989611399C75684735 @default.
- W2989611399 hasConceptScore W2989611399C86803240 @default.
- W2989611399 hasIssue "3" @default.
- W2989611399 hasLocation W29896113991 @default.
- W2989611399 hasOpenAccess W2989611399 @default.
- W2989611399 hasPrimaryLocation W29896113991 @default.
- W2989611399 hasRelatedWork W1996408511 @default.
- W2989611399 hasRelatedWork W2312396211 @default.
- W2989611399 hasRelatedWork W2577361510 @default.
- W2989611399 hasRelatedWork W2887487214 @default.
- W2989611399 hasRelatedWork W2971654642 @default.
- W2989611399 hasRelatedWork W3014300295 @default.
- W2989611399 hasRelatedWork W3032979662 @default.
- W2989611399 hasRelatedWork W3158877728 @default.
- W2989611399 hasRelatedWork W3169598651 @default.
- W2989611399 hasRelatedWork W4224943336 @default.
- W2989611399 hasVolume "1333" @default.
- W2989611399 isParatext "false" @default.
- W2989611399 isRetracted "false" @default.
- W2989611399 magId "2989611399" @default.
- W2989611399 workType "article" @default.