Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989622188> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2989622188 abstract "Designing a machine learning based network intrusion detection system (IDS) with high-dimensional features can lead to prolonged classification processes. This is while low-dimensional features can reduce these processes. Moreover, classification of network traffic with imbalanced class distributions has posed a significant drawback on the performance attainable by most well-known classifiers. With the presence of imbalanced data, the known metrics may fail to provide adequate information about the performance of the classifier. This study first uses Principal Component Analysis (PCA) as a feature dimensionality reduction approach. The resulting low-dimensional features are then used to build various classifiers such as Random Forest (RF), Bayesian Network, Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) for designing an IDS. The experimental findings with low-dimensional features in binary and multi-class classification show better performance in terms of Detection Rate (DR), F-Measure, False Alarm Rate (FAR), and Accuracy. Furthermore, in this paper, we apply a Multi-Class Combined performance metric Combi ned Mc with respect to class distribution through incorporating FAR, DR, Accuracy, and class distribution parameters. In addition, we developed a uniform distribution based balancing approach to handle the imbalanced distribution of the minority class instances in the CICIDS2017 network intrusion dataset. We were able to reduce the CICIDS2017 dataset's feature dimensions from 81 to 10 using PCA, while maintaining a high accuracy of 99.6% in multi-class and binary classification." @default.
- W2989622188 created "2019-12-05" @default.
- W2989622188 creator A5018990690 @default.
- W2989622188 creator A5024287768 @default.
- W2989622188 creator A5031601451 @default.
- W2989622188 creator A5045161880 @default.
- W2989622188 date "2019-06-01" @default.
- W2989622188 modified "2023-09-24" @default.
- W2989622188 title "Efficient Network Intrusion Detection Using PCA-Based Dimensionality Reduction of Features" @default.
- W2989622188 cites W2002394060 @default.
- W2989622188 cites W2028070713 @default.
- W2989622188 cites W2031163547 @default.
- W2989622188 cites W2038765014 @default.
- W2989622188 cites W2063151808 @default.
- W2989622188 cites W2090135786 @default.
- W2989622188 cites W2155461860 @default.
- W2989622188 cites W2159241419 @default.
- W2989622188 cites W2462597051 @default.
- W2989622188 cites W2768426510 @default.
- W2989622188 cites W2780584094 @default.
- W2989622188 cites W2789828921 @default.
- W2989622188 cites W2891833507 @default.
- W2989622188 cites W2896412072 @default.
- W2989622188 cites W2899191278 @default.
- W2989622188 cites W2899653275 @default.
- W2989622188 cites W2900678839 @default.
- W2989622188 cites W2911278693 @default.
- W2989622188 cites W2913446593 @default.
- W2989622188 doi "https://doi.org/10.1109/isncc.2019.8909140" @default.
- W2989622188 hasPublicationYear "2019" @default.
- W2989622188 type Work @default.
- W2989622188 sameAs 2989622188 @default.
- W2989622188 citedByCount "13" @default.
- W2989622188 countsByYear W29896221882020 @default.
- W2989622188 countsByYear W29896221882021 @default.
- W2989622188 countsByYear W29896221882022 @default.
- W2989622188 countsByYear W29896221882023 @default.
- W2989622188 crossrefType "proceedings-article" @default.
- W2989622188 hasAuthorship W2989622188A5018990690 @default.
- W2989622188 hasAuthorship W2989622188A5024287768 @default.
- W2989622188 hasAuthorship W2989622188A5031601451 @default.
- W2989622188 hasAuthorship W2989622188A5045161880 @default.
- W2989622188 hasConcept C119857082 @default.
- W2989622188 hasConcept C12267149 @default.
- W2989622188 hasConcept C124101348 @default.
- W2989622188 hasConcept C153180895 @default.
- W2989622188 hasConcept C154945302 @default.
- W2989622188 hasConcept C169258074 @default.
- W2989622188 hasConcept C27438332 @default.
- W2989622188 hasConcept C35525427 @default.
- W2989622188 hasConcept C41008148 @default.
- W2989622188 hasConcept C52620605 @default.
- W2989622188 hasConcept C52622490 @default.
- W2989622188 hasConcept C66905080 @default.
- W2989622188 hasConcept C69738355 @default.
- W2989622188 hasConcept C70518039 @default.
- W2989622188 hasConcept C95623464 @default.
- W2989622188 hasConceptScore W2989622188C119857082 @default.
- W2989622188 hasConceptScore W2989622188C12267149 @default.
- W2989622188 hasConceptScore W2989622188C124101348 @default.
- W2989622188 hasConceptScore W2989622188C153180895 @default.
- W2989622188 hasConceptScore W2989622188C154945302 @default.
- W2989622188 hasConceptScore W2989622188C169258074 @default.
- W2989622188 hasConceptScore W2989622188C27438332 @default.
- W2989622188 hasConceptScore W2989622188C35525427 @default.
- W2989622188 hasConceptScore W2989622188C41008148 @default.
- W2989622188 hasConceptScore W2989622188C52620605 @default.
- W2989622188 hasConceptScore W2989622188C52622490 @default.
- W2989622188 hasConceptScore W2989622188C66905080 @default.
- W2989622188 hasConceptScore W2989622188C69738355 @default.
- W2989622188 hasConceptScore W2989622188C70518039 @default.
- W2989622188 hasConceptScore W2989622188C95623464 @default.
- W2989622188 hasLocation W29896221881 @default.
- W2989622188 hasOpenAccess W2989622188 @default.
- W2989622188 hasPrimaryLocation W29896221881 @default.
- W2989622188 hasRelatedWork W2091899028 @default.
- W2989622188 hasRelatedWork W2108197782 @default.
- W2989622188 hasRelatedWork W2154706222 @default.
- W2989622188 hasRelatedWork W2472223596 @default.
- W2989622188 hasRelatedWork W2560576162 @default.
- W2989622188 hasRelatedWork W2610381844 @default.
- W2989622188 hasRelatedWork W2768962222 @default.
- W2989622188 hasRelatedWork W2789828921 @default.
- W2989622188 hasRelatedWork W2883035064 @default.
- W2989622188 hasRelatedWork W2896343602 @default.
- W2989622188 hasRelatedWork W2907637129 @default.
- W2989622188 hasRelatedWork W2973362934 @default.
- W2989622188 hasRelatedWork W3005040103 @default.
- W2989622188 hasRelatedWork W3007182219 @default.
- W2989622188 hasRelatedWork W3017089353 @default.
- W2989622188 hasRelatedWork W3137818553 @default.
- W2989622188 hasRelatedWork W3158115238 @default.
- W2989622188 hasRelatedWork W3168414501 @default.
- W2989622188 hasRelatedWork W3198395019 @default.
- W2989622188 hasRelatedWork W830349550 @default.
- W2989622188 isParatext "false" @default.
- W2989622188 isRetracted "false" @default.
- W2989622188 magId "2989622188" @default.
- W2989622188 workType "article" @default.