Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989631839> ?p ?o ?g. }
- W2989631839 endingPage "108571" @default.
- W2989631839 startingPage "108571" @default.
- W2989631839 abstract "The partition identities of Capparelli and Primc were originally discovered via representation theoretic techniques, and have since then been studied and refined combinatorially, but the question of giving a very broad generalisation remained open. In these two companion papers, we give infinite families of partition identities which generalise Primc's and Capparelli's identities, and study their consequences on the theory of crystal bases of the affine Lie algebra An−1(1). In this first paper, we focus on combinatorial aspects. We give a n2-coloured generalisation of Primc's identity by constructing a n2×n2 matrix of difference conditions, Primc's original identities corresponding to n=2 and n=3. While most coloured partition identities in the literature connect partitions with difference conditions to partitions with congruence conditions, in our case, the natural way to generalise these identities is to relate partitions with difference conditions to coloured Frobenius partitions. This gives a very simple expression for the generating function. With a particular specialisation of the colour variables, our generalisation also yields a partition identity with congruence conditions. Then, using a bijection from our new generalisation of Primc's identity, we deduce a large family of identities on (n2−1)-coloured partitions which generalise Capparelli's identity, also in terms of coloured Frobenius partitions. The particular case n=2 is Capparelli's identity and one of the cases where n=3 recovers an identity of Meurman and Primc. In the second paper, we will focus on crystal theoretic aspects. We will show that the difference conditions we defined in our n2-coloured generalisation of Primc's identity are actually energy functions for certain An−1(1) crystals. We will then use this result to retrieve the Kac-Peterson character formula and derive a new character formula as a sum of infinite products for all the irreducible highest weight An−1(1)-modules of level 1." @default.
- W2989631839 created "2019-12-05" @default.
- W2989631839 creator A5028754105 @default.
- W2989631839 creator A5057691546 @default.
- W2989631839 date "2022-10-01" @default.
- W2989631839 modified "2023-10-14" @default.
- W2989631839 title "Generalisations of Capparelli's and Primc's identities, I: Coloured Frobenius partitions and combinatorial proofs" @default.
- W2989631839 cites W1495414956 @default.
- W2989631839 cites W1559932750 @default.
- W2989631839 cites W1773638535 @default.
- W2989631839 cites W1864760197 @default.
- W2989631839 cites W1899855207 @default.
- W2989631839 cites W1969399927 @default.
- W2989631839 cites W1980293481 @default.
- W2989631839 cites W1994046140 @default.
- W2989631839 cites W1994212531 @default.
- W2989631839 cites W1996965099 @default.
- W2989631839 cites W1997343040 @default.
- W2989631839 cites W2013664264 @default.
- W2989631839 cites W2015983451 @default.
- W2989631839 cites W2021764109 @default.
- W2989631839 cites W2027264913 @default.
- W2989631839 cites W2030200172 @default.
- W2989631839 cites W2030568854 @default.
- W2989631839 cites W2033353175 @default.
- W2989631839 cites W2050096228 @default.
- W2989631839 cites W2057317981 @default.
- W2989631839 cites W2061189804 @default.
- W2989631839 cites W2067873933 @default.
- W2989631839 cites W2074229939 @default.
- W2989631839 cites W2080947546 @default.
- W2989631839 cites W2087616284 @default.
- W2989631839 cites W2092905010 @default.
- W2989631839 cites W2120349017 @default.
- W2989631839 cites W2312591088 @default.
- W2989631839 cites W240707178 @default.
- W2989631839 cites W2520057784 @default.
- W2989631839 cites W2590656449 @default.
- W2989631839 cites W2626805016 @default.
- W2989631839 cites W2636905955 @default.
- W2989631839 cites W2884459493 @default.
- W2989631839 cites W2911282727 @default.
- W2989631839 cites W2947447038 @default.
- W2989631839 cites W2962687750 @default.
- W2989631839 cites W2963151184 @default.
- W2989631839 cites W2964015994 @default.
- W2989631839 cites W2971952667 @default.
- W2989631839 cites W3029336890 @default.
- W2989631839 cites W3098476951 @default.
- W2989631839 cites W3102466017 @default.
- W2989631839 cites W4239719365 @default.
- W2989631839 cites W4253514961 @default.
- W2989631839 doi "https://doi.org/10.1016/j.aim.2022.108571" @default.
- W2989631839 hasPublicationYear "2022" @default.
- W2989631839 type Work @default.
- W2989631839 sameAs 2989631839 @default.
- W2989631839 citedByCount "7" @default.
- W2989631839 countsByYear W29896318392020 @default.
- W2989631839 countsByYear W29896318392021 @default.
- W2989631839 countsByYear W29896318392022 @default.
- W2989631839 crossrefType "journal-article" @default.
- W2989631839 hasAuthorship W2989631839A5028754105 @default.
- W2989631839 hasAuthorship W2989631839A5057691546 @default.
- W2989631839 hasBestOaLocation W29896318391 @default.
- W2989631839 hasConcept C108710211 @default.
- W2989631839 hasConcept C114614502 @default.
- W2989631839 hasConcept C118539577 @default.
- W2989631839 hasConcept C118615104 @default.
- W2989631839 hasConcept C121332964 @default.
- W2989631839 hasConcept C136119220 @default.
- W2989631839 hasConcept C202444582 @default.
- W2989631839 hasConcept C24424167 @default.
- W2989631839 hasConcept C24890656 @default.
- W2989631839 hasConcept C2524010 @default.
- W2989631839 hasConcept C2778355321 @default.
- W2989631839 hasConcept C33923547 @default.
- W2989631839 hasConcept C42812 @default.
- W2989631839 hasConcept C92757383 @default.
- W2989631839 hasConceptScore W2989631839C108710211 @default.
- W2989631839 hasConceptScore W2989631839C114614502 @default.
- W2989631839 hasConceptScore W2989631839C118539577 @default.
- W2989631839 hasConceptScore W2989631839C118615104 @default.
- W2989631839 hasConceptScore W2989631839C121332964 @default.
- W2989631839 hasConceptScore W2989631839C136119220 @default.
- W2989631839 hasConceptScore W2989631839C202444582 @default.
- W2989631839 hasConceptScore W2989631839C24424167 @default.
- W2989631839 hasConceptScore W2989631839C24890656 @default.
- W2989631839 hasConceptScore W2989631839C2524010 @default.
- W2989631839 hasConceptScore W2989631839C2778355321 @default.
- W2989631839 hasConceptScore W2989631839C33923547 @default.
- W2989631839 hasConceptScore W2989631839C42812 @default.
- W2989631839 hasConceptScore W2989631839C92757383 @default.
- W2989631839 hasLocation W29896318391 @default.
- W2989631839 hasLocation W29896318392 @default.
- W2989631839 hasLocation W29896318393 @default.
- W2989631839 hasLocation W29896318394 @default.
- W2989631839 hasOpenAccess W2989631839 @default.
- W2989631839 hasPrimaryLocation W29896318391 @default.