Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989659631> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2989659631 abstract "Smart drying is one of the newest and most promising techniques. It is a multi- and inter-disciplinary sector which has potential to guarantee high value end-products by implementing innovative and reliable sensors, resources, tools and practices. Its recent developments embrace various R&D areas, such as computer vision (CV) and deep learning, which deal with allowing computers to understand digital images and videos better than humans. Conventional machine-learning techniques suffer several limitations, mainly due to their inability to process raw data. In fact, in the last few decades, machine learning required considerable domain expertise to mine raw data and extract features from which an algorithm could identify patterns in the input. Deep learning is a novel subfield of machine learning, which embraces methods that allow to discover patterns for detection or classification purposes by using raw data. Consequently, CV in combination with deep learning has the potential to be a powerful Process Analytical Technology tool useful for enhancing the understanding and control of critical process parameters that impact on quality of the final product.Deep learning was tested for its feasibility as CV tool for the analysis of inlet wet food to drying process. In details, convolutional neural networks (CNNs) were successfully applied for addressing the following tasks: (i) the semantic image segmentation of the inlet product (i.e., recognition between background and product pixels); (ii) the inlet product classification through its segmented image; (iii) the automated selection of optimal settings of drying process parameters.Results obtained not only represent a step forward in the development of smart dryers able to recognise the inlet wet product, and to set the proper process parameters on its own or as decision support system, but also lay the foundation for further researches on using a computer vision system as PAT tool for smart drying processes." @default.
- W2989659631 created "2019-12-05" @default.
- W2989659631 creator A5008504312 @default.
- W2989659631 creator A5009103648 @default.
- W2989659631 creator A5022731616 @default.
- W2989659631 creator A5033005482 @default.
- W2989659631 creator A5039181226 @default.
- W2989659631 creator A5053356041 @default.
- W2989659631 creator A5072484368 @default.
- W2989659631 date "2019-01-01" @default.
- W2989659631 modified "2023-09-23" @default.
- W2989659631 title "Recognition of inlet wet food in drying process through a deep learning approach" @default.
- W2989659631 hasPublicationYear "2019" @default.
- W2989659631 type Work @default.
- W2989659631 sameAs 2989659631 @default.
- W2989659631 citedByCount "0" @default.
- W2989659631 crossrefType "journal-article" @default.
- W2989659631 hasAuthorship W2989659631A5008504312 @default.
- W2989659631 hasAuthorship W2989659631A5009103648 @default.
- W2989659631 hasAuthorship W2989659631A5022731616 @default.
- W2989659631 hasAuthorship W2989659631A5033005482 @default.
- W2989659631 hasAuthorship W2989659631A5039181226 @default.
- W2989659631 hasAuthorship W2989659631A5053356041 @default.
- W2989659631 hasAuthorship W2989659631A5072484368 @default.
- W2989659631 hasConcept C108583219 @default.
- W2989659631 hasConcept C111919701 @default.
- W2989659631 hasConcept C119857082 @default.
- W2989659631 hasConcept C132964779 @default.
- W2989659631 hasConcept C154945302 @default.
- W2989659631 hasConcept C199360897 @default.
- W2989659631 hasConcept C2524010 @default.
- W2989659631 hasConcept C33923547 @default.
- W2989659631 hasConcept C41008148 @default.
- W2989659631 hasConcept C81363708 @default.
- W2989659631 hasConcept C90673727 @default.
- W2989659631 hasConcept C98045186 @default.
- W2989659631 hasConceptScore W2989659631C108583219 @default.
- W2989659631 hasConceptScore W2989659631C111919701 @default.
- W2989659631 hasConceptScore W2989659631C119857082 @default.
- W2989659631 hasConceptScore W2989659631C132964779 @default.
- W2989659631 hasConceptScore W2989659631C154945302 @default.
- W2989659631 hasConceptScore W2989659631C199360897 @default.
- W2989659631 hasConceptScore W2989659631C2524010 @default.
- W2989659631 hasConceptScore W2989659631C33923547 @default.
- W2989659631 hasConceptScore W2989659631C41008148 @default.
- W2989659631 hasConceptScore W2989659631C81363708 @default.
- W2989659631 hasConceptScore W2989659631C90673727 @default.
- W2989659631 hasConceptScore W2989659631C98045186 @default.
- W2989659631 hasLocation W29896596311 @default.
- W2989659631 hasOpenAccess W2989659631 @default.
- W2989659631 hasPrimaryLocation W29896596311 @default.
- W2989659631 hasRelatedWork W1999115254 @default.
- W2989659631 hasRelatedWork W2902232562 @default.
- W2989659631 hasRelatedWork W2903703585 @default.
- W2989659631 hasRelatedWork W2908413206 @default.
- W2989659631 hasRelatedWork W2940411505 @default.
- W2989659631 hasRelatedWork W2970438463 @default.
- W2989659631 hasRelatedWork W2970877676 @default.
- W2989659631 hasRelatedWork W3003183227 @default.
- W2989659631 hasRelatedWork W3004348291 @default.
- W2989659631 hasRelatedWork W3016909885 @default.
- W2989659631 hasRelatedWork W3032615834 @default.
- W2989659631 hasRelatedWork W3037965416 @default.
- W2989659631 hasRelatedWork W3093921350 @default.
- W2989659631 hasRelatedWork W3103940333 @default.
- W2989659631 hasRelatedWork W3113143171 @default.
- W2989659631 hasRelatedWork W3128536251 @default.
- W2989659631 hasRelatedWork W3164575965 @default.
- W2989659631 hasRelatedWork W3183632099 @default.
- W2989659631 hasRelatedWork W3193789896 @default.
- W2989659631 hasRelatedWork W3214263770 @default.
- W2989659631 isParatext "false" @default.
- W2989659631 isRetracted "false" @default.
- W2989659631 magId "2989659631" @default.
- W2989659631 workType "article" @default.