Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989661513> ?p ?o ?g. }
- W2989661513 endingPage "2202" @default.
- W2989661513 startingPage "2186" @default.
- W2989661513 abstract "Tyrosyl-tRNA synthetase ligates tyrosine to its cognate tRNA in the cytoplasm, but it can also be secreted through a noncanonical pathway. We found that extracellular tyrosyl-tRNA synthetase (YRS) exhibited proinflammatory activities. In addition to acting as a monocyte/macrophage chemoattractant, YRS initiated signaling through Toll-like receptor 2 (TLR2) resulting in NF-κB activation and release of tumor necrosis factor α (TNFα) and multiple chemokines, including MIP-1α/β, CXCL8 (IL8), and CXCL1 (KC) from THP1 monocyte and peripheral blood mononuclear cell–derived macrophages. Furthermore, YRS up-regulated matrix metalloproteinase (MMP) activity in a TNFα-dependent manner in M0 macrophages. Because MMPs process a variety of intracellular proteins that also exhibit extracellular moonlighting functions, we profiled 10 MMPs for YRS cleavage and identified 55 cleavage sites by amino-terminal oriented mass spectrometry of substrates (ATOMS) positional proteomics and Edman degradation. Stable proteoforms resulted from cleavages near the start of the YRS C-terminal EMAPII domain. All of the MMPs tested cleaved at ADS386↓387LYV and VSG405↓406LVQ, generating 43- and 45-kDa fragments. The highest catalytic efficiency for YRS was demonstrated by MMP7, which is highly expressed by monocytes and macrophages, and by neutrophil-specific MMP8. MMP-cleaved YRS enhanced TLR2 signaling, increased TNFα secretion from macrophages, and amplified monocyte/macrophage chemotaxis compared with unprocessed YRS. The cleavage of YRS by MMP8, but not MMP7, was inhibited by tyrosine, a substrate of the YRS aminoacylation reaction. Overall, the proinflammatory activity of YRS is enhanced by MMP cleavage, which we suggest forms a feed-forward mechanism to promote inflammation. Tyrosyl-tRNA synthetase ligates tyrosine to its cognate tRNA in the cytoplasm, but it can also be secreted through a noncanonical pathway. We found that extracellular tyrosyl-tRNA synthetase (YRS) exhibited proinflammatory activities. In addition to acting as a monocyte/macrophage chemoattractant, YRS initiated signaling through Toll-like receptor 2 (TLR2) resulting in NF-κB activation and release of tumor necrosis factor α (TNFα) and multiple chemokines, including MIP-1α/β, CXCL8 (IL8), and CXCL1 (KC) from THP1 monocyte and peripheral blood mononuclear cell–derived macrophages. Furthermore, YRS up-regulated matrix metalloproteinase (MMP) activity in a TNFα-dependent manner in M0 macrophages. Because MMPs process a variety of intracellular proteins that also exhibit extracellular moonlighting functions, we profiled 10 MMPs for YRS cleavage and identified 55 cleavage sites by amino-terminal oriented mass spectrometry of substrates (ATOMS) positional proteomics and Edman degradation. Stable proteoforms resulted from cleavages near the start of the YRS C-terminal EMAPII domain. All of the MMPs tested cleaved at ADS386↓387LYV and VSG405↓406LVQ, generating 43- and 45-kDa fragments. The highest catalytic efficiency for YRS was demonstrated by MMP7, which is highly expressed by monocytes and macrophages, and by neutrophil-specific MMP8. MMP-cleaved YRS enhanced TLR2 signaling, increased TNFα secretion from macrophages, and amplified monocyte/macrophage chemotaxis compared with unprocessed YRS. The cleavage of YRS by MMP8, but not MMP7, was inhibited by tyrosine, a substrate of the YRS aminoacylation reaction. Overall, the proinflammatory activity of YRS is enhanced by MMP cleavage, which we suggest forms a feed-forward mechanism to promote inflammation. Matrix metalloproteinases (MMPs) 6The abbreviations used are: MMPmatrix metalloproteinaseAp4AP1,P4-di(adenosine-5′) tetraphosphateAp5AP1,P5-di(adenosine-5′) pentaphosphateAPMAp-aminophenylmercuric acetateATOMSamino-terminal oriented mass spectrometry of substratesCCLCC chemokine ligandCCScosmic calf serumEMAPIIendothelial monocyte-activating polypeptide IIIFNinterferonILinterleukiniTRAQisobaric tags for relative and absolute quantificationLPSlipopolysaccharidePARP-1poly(ADP-ribose) polymerase 1PBMCperipheral blood mononuclear cellPMAphorbol 12-myristate 13-acetateRPMIRoswell Park Memorial InstituteTAILSterminal amine isotopic labeling of substratesTLRtoll-like receptorTNFtumor necrosis factorWRStryptophanyl-tRNA synthetaseYRStyrosyl-tRNA synthetasePDBProtein Data BankELISAenzyme-linked immunosorbent assayANOVAanalysis of variancePVDFpolyvinylidene difluoride. are a family of 23 secreted and membrane-anchored proteases (1Parks W.C. Wilson C.L. López-Boado Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity.Nat. Rev. Immunol. 2004; 4 (15286728): 617-62910.1038/nri1418Crossref PubMed Scopus (1426) Google Scholar). By cleaving a variety of signaling molecules in addition to extracellular matrix components (2Rodríguez D. Morrison C.J. Overall C.M. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics.Biochim. Biophys. Acta. 2010; 1803 (19800373): 39-5410.1016/j.bbamcr.2009.09.015Crossref PubMed Scopus (411) Google Scholar), MMPs regulate many different processes, including inflammation (1Parks W.C. Wilson C.L. López-Boado Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity.Nat. Rev. Immunol. 2004; 4 (15286728): 617-62910.1038/nri1418Crossref PubMed Scopus (1426) Google Scholar, 2Rodríguez D. Morrison C.J. Overall C.M. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics.Biochim. Biophys. Acta. 2010; 1803 (19800373): 39-5410.1016/j.bbamcr.2009.09.015Crossref PubMed Scopus (411) Google Scholar, 3McQuibban G.A. Gong J.H. Tam E.M. McCulloch C.A. Clark-Lewis I. Overall C.M. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3.Science. 2000; 289 (10947989): 1202-120610.1126/science.289.5482.1202Crossref PubMed Scopus (631) Google Scholar, 4Butler G.S. Overall C.M. Updated biological roles for matrix metalloproteinases and new “Intracellular” substrates revealed by degradomics.Biochemistry. 2009; 48 (19817485): 10830-1084510.1021/bi901656fCrossref PubMed Scopus (177) Google Scholar, 5Jobin P.G. Butler G.S. Overall C.M. New intracellular activities of matrix metalloproteinases shine in the moonlight.Biochim. Biophys. Acta Mol. Cell Res. 2017; 1864 (28526562): 2043-205510.1016/j.bbamcr.2017.05.013Crossref PubMed Scopus (91) Google Scholar, 6Bellac C.L. Dufour A. Krisinger M.J. Loonchanta A. Starr A.E. Auf dem Keller U. Lange P.F. Goebeler V. Kappelhoff R. Butler G.S. Burtnick L.D. Conway E.M. Roberts C.R. Overall C.M. Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis.Cell Rep. 2014; 9 (25310974): 618-63210.1016/j.celrep.2014.09.006Abstract Full Text Full Text PDF PubMed Scopus (72) Google Scholar, 7Dufour A. Bellac C.L. Eckhard U. Solis N. Klein T. Kappelhoff R. Fortelny N. Jobin P. Rozmus J. Mark J. Pavlidis P. Dive V. Barbour S.J. Overall C.M. C-terminal truncation of IFN-γ inhibits proinflammatory macrophage responses and is deficient in autoimmune disease.Nat. Commun. 2018; 9 (29925830): 241610.1038/s41467-018-04717-4Crossref PubMed Scopus (31) Google Scholar). Notably, the innate immune cell MMPs, neutrophil-specific MMP8 (8Tester A.M. Cox J.H. Connor A.R. Starr A.E. Dean R.A. Puente X.S. López-Otín C. Overall C.M. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity.PLoS ONE. 2007; 2 (17375198): e31210.1371/journal.pone.0000312Crossref PubMed Scopus (171) Google Scholar) and monocyte/macrophage-lineage MMP7 (9Wilson C.L. Ouellette A.J. Satchell D.P. Ayabe T. López-Boado Y.S. Stratman J.L. Hultgren S.J. Matrisian L.M. Parks W.C. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense.Science. 1999; 286 (10506557): 113-11710.1126/science.286.5437.113Crossref PubMed Scopus (894) Google Scholar) and MMP12 (14Cox J.H. Starr A.E. Kappelhoff R. Yan R. Roberts C.R. Overall C.M. Matrix metalloproteinase 8 deficiency in mice exacerbates inflammatory arthritis through delayed neutrophil apoptosis and reduced caspase 11 expression.Arthritis Rheum. 2010; 62 (21120997): 3645-365510.1002/art.27757Crossref PubMed Scopus (49) Google Scholar), orchestrate leukocyte chemotaxis during inflammation by activating and inactivating cleavages of chemokines. Indeed, the majority of human CC chemokine ligands (CCL) that regulate monocyte and macrophage chemotaxis and activation are cleaved by these and other MMPs (3McQuibban G.A. Gong J.H. Tam E.M. McCulloch C.A. Clark-Lewis I. Overall C.M. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3.Science. 2000; 289 (10947989): 1202-120610.1126/science.289.5482.1202Crossref PubMed Scopus (631) Google Scholar, 12McQuibban G.A. Gong J.-H. Wong J.P. Wallace J.L. Clark-Lewis I. Overall C.M. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo.Blood. 2002; 100 (12149192): 1160-116710.1182/blood.V100.4.1160.h81602001160_1160_1167Crossref PubMed Google Scholar, 13Starr A.E. Dufour A. Maier J. Overall C.M. Biochemical analysis of matrix metalloproteinase activation of chemokines CCL15 and CCL23 and increased glycosaminoglycan binding of CCL16.J. Biol. Chem. 2012; 287 (22147696): 5848-586010.1074/jbc.M111.314609Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar), as are all seven human ELR+ CXCL neutrophil chemokines, including CXCL8 (IL8). For CCL chemokines, inactivation or generation of antagonists by MMPs are common sequelae, whereas CXCL activation by neutrophil MMP8 is followed later by inactivating cleavages just C-terminal to or within the ELR motif by MMP12 (11Dean R.A. Cox J.H. Bellac C.L. Doucet A. Starr A.E. Overall C.M. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx.Blood. 2008; 112 (18660381): 3455-346410.1182/blood-2007-12-129080Crossref PubMed Scopus (182) Google Scholar), which temporally regulates neutrophil chemoattraction in vivo (6Bellac C.L. Dufour A. Krisinger M.J. Loonchanta A. Starr A.E. Auf dem Keller U. Lange P.F. Goebeler V. Kappelhoff R. Butler G.S. Burtnick L.D. Conway E.M. Roberts C.R. Overall C.M. Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis.Cell Rep. 2014; 9 (25310974): 618-63210.1016/j.celrep.2014.09.006Abstract Full Text Full Text PDF PubMed Scopus (72) Google Scholar, 8Tester A.M. Cox J.H. Connor A.R. Starr A.E. Dean R.A. Puente X.S. López-Otín C. Overall C.M. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity.PLoS ONE. 2007; 2 (17375198): e31210.1371/journal.pone.0000312Crossref PubMed Scopus (171) Google Scholar, 11Dean R.A. Cox J.H. Bellac C.L. Doucet A. Starr A.E. Overall C.M. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx.Blood. 2008; 112 (18660381): 3455-346410.1182/blood-2007-12-129080Crossref PubMed Scopus (182) Google Scholar, 14Cox J.H. Starr A.E. Kappelhoff R. Yan R. Roberts C.R. Overall C.M. Matrix metalloproteinase 8 deficiency in mice exacerbates inflammatory arthritis through delayed neutrophil apoptosis and reduced caspase 11 expression.Arthritis Rheum. 2010; 62 (21120997): 3645-365510.1002/art.27757Crossref PubMed Scopus (49) Google Scholar). Cytokines such as interferon (IFN) α (10Marchant D.J. Bellac C.L. Moraes T.J. Wadsworth S.J. Dufour A. Butler G.S. Bilawchuk L.M. Hendry R.G. Robertson A.G. Cheung C.T. Ng J. Ang L. Luo Z. Heilbron K. Norris M.J. et al.A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity.Nat. Med. 2014; 20 (24784232): 493-50210.1038/nm.3508Crossref PubMed Scopus (174) Google Scholar) and IFNγ (7Dufour A. Bellac C.L. Eckhard U. Solis N. Klein T. Kappelhoff R. Fortelny N. Jobin P. Rozmus J. Mark J. Pavlidis P. Dive V. Barbour S.J. Overall C.M. C-terminal truncation of IFN-γ inhibits proinflammatory macrophage responses and is deficient in autoimmune disease.Nat. Commun. 2018; 9 (29925830): 241610.1038/s41467-018-04717-4Crossref PubMed Scopus (31) Google Scholar) and complement proteins, including mannose-binding lectin (15Butler G.S. Sim D. Tam E. Devine D. Overall C.M. Mannose-binding lectin (MBL) mutants are susceptible to matrix metalloproteinase proteolysis: potential role in human MBL deficiency.J. Biol. Chem. 2002; 277 (11891230): 17511-1751910.1074/jbc.M201461200Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar), C1q (16Ruiz S. Henschen-Edman A.H. Nagase H. Tenner A.J. Digestion of C1q collagen-like domain with MMPs-1, -2, -3, and -9 further defines the sequence involved in the stimulation of neutrophil superoxide production.J. Leukoc. Biol. 1999; 66 (10496311): 416-42210.1002/jlb.66.3.416Crossref PubMed Scopus (27) Google Scholar), C3, C3a, C3b, and C5a (6Bellac C.L. Dufour A. Krisinger M.J. Loonchanta A. Starr A.E. Auf dem Keller U. Lange P.F. Goebeler V. Kappelhoff R. Butler G.S. Burtnick L.D. Conway E.M. Roberts C.R. Overall C.M. Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis.Cell Rep. 2014; 9 (25310974): 618-63210.1016/j.celrep.2014.09.006Abstract Full Text Full Text PDF PubMed Scopus (72) Google Scholar), are also MMP substrates in vivo. Thus, MMP processing of these bioactive substrates dampens inflammation with MMPs playing beneficial roles essential for terminating inflammatory responses (3McQuibban G.A. Gong J.H. Tam E.M. McCulloch C.A. Clark-Lewis I. Overall C.M. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3.Science. 2000; 289 (10947989): 1202-120610.1126/science.289.5482.1202Crossref PubMed Scopus (631) Google Scholar, 17Dufour A. Overall C.M. Missing the target: matrix metalloproteinase antitargets in inflammation and cancer.Trends Pharmacol. Sci. 2013; 34 (23541335): 233-24210.1016/j.tips.2013.02.004Abstract Full Text Full Text PDF PubMed Scopus (233) Google Scholar). matrix metalloproteinase P1,P4-di(adenosine-5′) tetraphosphate P1,P5-di(adenosine-5′) pentaphosphate p-aminophenylmercuric acetate amino-terminal oriented mass spectrometry of substrates CC chemokine ligand cosmic calf serum endothelial monocyte-activating polypeptide II interferon interleukin isobaric tags for relative and absolute quantification lipopolysaccharide poly(ADP-ribose) polymerase 1 peripheral blood mononuclear cell phorbol 12-myristate 13-acetate Roswell Park Memorial Institute terminal amine isotopic labeling of substrates toll-like receptor tumor necrosis factor tryptophanyl-tRNA synthetase tyrosyl-tRNA synthetase Protein Data Bank enzyme-linked immunosorbent assay analysis of variance polyvinylidene difluoride. Several eukaryotic tRNA synthetases have roles within the cell in addition to aminoacylation (18Cerini C. Kerjan P. Astier M. Gratecos D. Mirande M. Sémériva M. A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase.EMBO J. 1991; 10 (1756734): 4267-427710.1002/j.1460-2075.1991.tb05005.xCrossref PubMed Scopus (99) Google Scholar, 19Ko Y.G. Kim E.Y. Kim T. Park H. Park H.S. Choi E.J. Kim S. Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1.J. Biol. Chem. 2001; 276 (11096076): 6030-603610.1074/jbc.M006189200Abstract Full Text Full Text PDF PubMed Scopus (161) Google Scholar, 20Han J.M. Jeong S.J. Park M.C. Kim G. Kwon N.H. Kim H.K. Ha S.H. Ryu S.H. Kim S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway.Cell. 2012; 149 (22424946): 410-42410.1016/j.cell.2012.02.044Abstract Full Text Full Text PDF PubMed Scopus (556) Google Scholar) in protein synthesis, and despite lacking a canonical signal sequence, several tRNA synthetases (21Ahn Y.H. Park S. Choi J.J. Park B.-K. Rhee K.H. Kang E. Ahn S. Lee C.-H. Lee J.S. Inn K.-S. Cho M.-L. Park S.-H. Park K. Park H.J. Lee J.-H. et al.Secreted tryptophanyl-tRNA synthetase as a primary defence system against infection.Nat. Microbiol. 2016; 2 (27748732): 1619110.1038/nmicrobiol.2016.191Crossref PubMed Scopus (43) Google Scholar, 22Park S.G. Kim H.J. Min Y.H. Choi E.-C. Shin Y.K. Park B.-J. Lee S.W. Kim S. Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response.Proc. Natl. Acad. Sci. U.S.A. 2005; 102 (15851690): 6356-636110.1073/pnas.0500226102Crossref PubMed Scopus (138) Google Scholar, 23Park S.-R. Kim H.-J. Yang S.-R. Park C.H. Lee H.-Y. Hong I.-S. A novel endogenous damage signal, glycyl tRNA synthetase, activates multiple beneficial functions of mesenchymal stem cells.Cell Death Differ. 2018; 25 (29666468): 2023-203610.1038/s41418-018-0099-2Crossref PubMed Scopus (13) Google Scholar, 24Wakasugi K. Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase.Science. 1999; 284 (10102815): 147-15110.1126/science.284.5411.147Crossref PubMed Scopus (409) Google Scholar, 25Kanaji T. Vo M.-N. Kanaji S. Zarpellon A. Shapiro R. Morodomi Y. Yuzuriha A. Eto K. Belani R. Do M.-H. Yang X.-L. Ruggeri Z.M. Schimmel P. Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia.Proc. Natl. Acad. Sci. U.S.A. 2018; 115 (30104364): E8228-E823510.1073/pnas.1807000115Crossref PubMed Scopus (23) Google Scholar) have extracellular “moonlighting” functions (26Guo M. Yang X.-L. Schimmel P. New functions of aminoacyl-tRNA synthetases beyond translation.Nat. Rev. Mol. Cell Biol. 2010; 11 (20700144): 668-67410.1038/nrm2956Crossref PubMed Scopus (230) Google Scholar, 27Guo M. Schimmel P. Essential nontranslational functions of tRNA synthetases.Nat. Chem. Biol. 2013; 9 (23416400): 145-15310.1038/nchembio.1158Crossref PubMed Scopus (245) Google Scholar). Very recently, we demonstrated that the proinflammatory activities of moonlighting tryptophanyl-tRNA synthetase (WRS), secreted in response to IFNγ, are lost following MMP cleavage (28Jobin P.G. Solis N. Machado Y. Bell P.A. Kwon N.H. Kim S. Overall C.M. Butler G.S. Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase.J. Biol. Chem. 2019; 294 (31324718): 12866-1287910.1074/jbc.RA119.009584Abstract Full Text Full Text PDF PubMed Scopus (12) Google Scholar). Tyrosyl-tRNA synthetase (YRS) (∼59 kDa, 528 residues), which ligates tyrosine to tRNA(Tyr) in protein translation, is also a moonlighting protein. In addition to an N-terminal Rossmann fold catalytic domain (residues 1–230) and tRNA anticodon recognition domain (residues 231–364), eukaryotic YRS has a C-terminal endothelial monocyte-activating polypeptide II-like (EMAPII) domain (residues 365–528). The EMAPII domain of YRS is 51% identical to the cytokine EMAPII, but is absent from prokaryotic YRS and is not necessary for translation, implying additional functions for the domain (24Wakasugi K. Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase.Science. 1999; 284 (10102815): 147-15110.1126/science.284.5411.147Crossref PubMed Scopus (409) Google Scholar, 29Yang X.-L. Skene R.J. McRee D.E. Schimmel P. Nonlinear partial differential equations and applications: crystal structure of a human aminoacyl-tRNA synthetase cytokine.Proc. Natl. Acad. Sci. U.S.A. 2002; 99 (12427973): 15369-1537410.1073/pnas.242611799Crossref PubMed Scopus (83) Google Scholar). Extracellular YRS has been detected in human plasma (30Marcus K. Immler D. Sternberger J. Meyer H.E. Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins.Electrophoresis. 2000; 21 (10949139): 2622-263610.1002/1522-2683(20000701)21:13%3C2622::AID-ELPS2622%3E3.0.CO;2-3Crossref PubMed Scopus (171) Google Scholar) and in exosomes (31Keerthikumar S. Chisanga D. Ariyaratne D. Al Saffar H. Anand S. Zhao K. Samuel M. Pathan M. Jois M. Chilamkurti N. Gangoda L. Mathivanan S. ExoCarta: A Web-Based Compendium of Exosomal Cargo.J. Mol. Biol. 2016; 428: 688-692Crossref PubMed Scopus (683) Google Scholar) and is abundant in releasable platelet granules (25Kanaji T. Vo M.-N. Kanaji S. Zarpellon A. Shapiro R. Morodomi Y. Yuzuriha A. Eto K. Belani R. Do M.-H. Yang X.-L. Ruggeri Z.M. Schimmel P. Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia.Proc. Natl. Acad. Sci. U.S.A. 2018; 115 (30104364): E8228-E823510.1073/pnas.1807000115Crossref PubMed Scopus (23) Google Scholar, 30Marcus K. Immler D. Sternberger J. Meyer H.E. Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins.Electrophoresis. 2000; 21 (10949139): 2622-263610.1002/1522-2683(20000701)21:13%3C2622::AID-ELPS2622%3E3.0.CO;2-3Crossref PubMed Scopus (171) Google Scholar). YRS is secreted from the human histiocytic lymphoma cell line U-937 in culture (32Wakasugi K. Schimmel P. Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase.J. Biol. Chem. 1999; 274 (10438485): 23155-2315910.1074/jbc.274.33.23155Abstract Full Text Full Text PDF PubMed Scopus (124) Google Scholar). Truncated proteoforms of YRS, arising from alternative splicing, lack the monocyte chemoattractant EMAPII domain (33Lo W.S. Gardiner E. Xu Z. Lau C.F. Wang F. Zhou J.J. Mendlein J.D. Nangle L.A. Chiang K.P. Yang X.L. Au K.F. Wong W.H. Guo M. Zhang M. Schimmel P. Human tRNA synthetase catalytic nulls with diverse functions.Science. 2014; 345 (25035493): 328-33210.1126/science.1252943Crossref PubMed Scopus (81) Google Scholar). The sequence R371VGKIIT377 in the EMAPII domain is responsible for chemotaxis (32Wakasugi K. Schimmel P. Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase.J. Biol. Chem. 1999; 274 (10438485): 23155-2315910.1074/jbc.274.33.23155Abstract Full Text Full Text PDF PubMed Scopus (124) Google Scholar). The Rossmann fold domain of YRS also displays a neutrophil chemoattractant E91LR93 motif that was shown to engage the CXCR1 receptor (24Wakasugi K. Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase.Science. 1999; 284 (10102815): 147-15110.1126/science.284.5411.147Crossref PubMed Scopus (409) Google Scholar). The EMAPII domain released by plasmin and elastase cleavage induces secretion of tumor necrosis factor (TNF)α from macrophages (34Yang X.L. Kapoor M. Otero F.J. Slike B.M. Tsuruta H. Frausto R. Bates A. Ewalt K.L. Cheresh D.A. Schimmel P. Gain-of-function mutational activation of human tRNA synthetase procytokine.Chem. Biol. 2007; 14 (18096501): 1323-133310.1016/j.chembiol.2007.10.016Abstract Full Text Full Text PDF PubMed Scopus (30) Google Scholar). An additional moonlighting function of YRS, which is shared with several tRNA synthetases, is the generation of diadenosine polyphosphates in a side reaction during aminoacylation (35Nakajima H. Tomioka I. Kitabatake S. Tomita K. Enzymatic synthesis of diadenosine polyphosphates by leucyl tRNA synthetase coupled with ATP regeneration.Ann. N.Y. Acad. Sci. 1990; 613 (2076013): 734-73710.1111/j.1749-6632.1990.tb18255.xCrossref PubMed Scopus (1) Google Scholar, 36Tshori S. Razin E. Nechushtan H. Amino-acyl tRNA synthetases generate dinucleotide polyphosphates as second messengers: functional implications.Top. Curr. Chem. 2014; 344 (23536246): 189-20610.1007/128_2013_426Crossref PubMed Scopus (15) Google Scholar): P1,P4-di(adenosine-5′) tetraphosphate (Ap4A) and P1,P5-di(adenosine-5′) pentaphosphate (Ap5A). These products also have physiological roles outside the cell. Extracellular Ap4A and Ap5A bind potassium channels on myocardial tissue (37Jovanovic A. Zhang S. Alekseev A.E. Terzic A. Diadenosine polyphosphate-induced inhibition of cardiac KATP channels: operative state-dependent regulation by a nucleoside diphosphate.Pflugers Arch. 1996; 431 (8596735): 800-80210.1007/BF02253848PubMed Google Scholar) and inhibit neutrophil apoptosis (38Gasmi L. McLennan A.G. Edwards S.W. Neutrophil apoptosis is delayed by the diadenosine polyphosphates, Ap5A and Ap6A: synergism with granulocyte-macrophage colony-stimulating factor.Br. J. Haematol. 1996; 95 (8982038): 637-63910.1046/j.1365-2141.1996.d01-1960.xCrossref PubMed Scopus (13) Google Scholar). Thus, YRS may control multiple physiological and disease processes both inside and outside the cell. To further elucidate the roles of MMPs in physiological and pathological processes that can occur when proteolytic activity is dysregulated, we developed several targeted proteomic technologies known collectively as “degradomics” (39López-Otín C. Overall C.M. Protease degradomics: a new challenge for proteomics.Nat. Rev. Mol. Cell Biol. 2002; 3 (12094217): 509-51910.1038/nrm858Crossref PubMed Scopus (611) Google Scholar, 40Kleifeld O. Doucet A. auf dem Keller U. Prudova A. Schilling O. Kainthan R.K. Starr A.E. Foster L.J. Kizhakkedathu J.N. Overall C.M. Isotopic labeling of terminal amines in complex samples identifies protein N termini and protease cleavage products.Nat. Biotechnol. 2010; 28 (20208520): 281-28810.1038/nbt.1611Crossref PubMed Scopus (390) Google Scholar, 41Tam E.M. Morrison C.J. Wu Y.I. Stack M.S. Overall C.M. Membrane protease proteomics: isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates.Proc. Natl. Acad. Sci. U.S.A. 2004; 101 (15118097): 6917-692210.1073/pnas.0305862101Crossref PubMed Scopus (245) Google Scholar). Degradomics identifies protease substrates in both in vitro and in vivo cell culture systems (41Tam E.M. Morrison C.J. Wu Y.I. Stack M.S. Overall C.M. Membrane protease proteomics: isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates.Proc. Natl. Acad. Sci. U.S.A. 2004; 101 (15118097): 6917-692210.1073/pnas.0305862101Crossref PubMed Scopus (245) Google Scholar, 42Dean R.A. Butler G.S. Hamma-Kourbali Y. Delbé J. Brigstock D.R. Courty J. Overall C.M. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/connective.Mol. Cell. Biol. 2007; 27 (17908800): 8454-846510.1128/MCB.00821-07Crossref PubMed Scopus (172) Google Scholar, 43Butler G.S. Dean R.A. Tam E.M. Overall C.M. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding.Mol. Cell. Biol. 2008; 28 (18505826): 4896-491410.1128/MCB.01775-07Crossref PubMed Scopus (136) Google Scholar, 44Prudova A. auf dem Keller U. Butler G.S. Overall C.M. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics.Mol. Cell. Proteomics. 2010; 9 (20305284): 894-91110.1074/mcp.M000050-MCP201Abstract Full Text Full Text PDF PubMed Scopus (217) Google Scholar), animal models (6Bellac C.L. Dufour A. Krisinger M.J. Loonchanta A. Starr A.E. Auf dem Keller U. Lange P.F. Goebeler V. Kappelhoff R. Butler G.S. Burtnick L.D. Conway E.M. Roberts C.R. Overall C.M. Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis.Cell Rep. 2014; 9 (25310974): 618-63210.1016/j.celrep.2014.09.006Abstract Full Text Full Text PDF PubMed Scopus (72) Google Scholar, 45auf dem Keller U. Prudova A. Eckhard U. Fingleton B. Overall C.M. Systems-level analysis of proteolytic events in increased vascular permeability and complement activation in skin inflammation.Sci. Signal. 2013; 6 (23322905): rs210.1126/scisignal.2003512Crossref PubMed Scopus (93) Google Scholar), and human tissues (46Eckhard U. Marino G. Abbey S.R. Tharmarajah G. Matthew I. Overall C.M. The human dental pulp proteome and N-terminome: levering the unexplored potential of semitryptic peptides enriched by TAILS to identify missing proteins in the human proteome project in underexplored tissues.J. Proteome Res. 2015; 14 (26258467): 3568-358210.1021/acs.jproteome.5b00579Crossref PubMed Scopus (36) Google Scholar, 47Abbey S.R. Eckhard U. Solis N. Marino G. Matthew I. Overall C.M. The human odontoblast cell layer and dental pulp proteomes and N-terminomes.J. Dent. Res. 2018; 97 (29035686): 338-34610.1177/0022034517736054Crossref PubMed Scopus (8) Google Scholar, 48Prudova A. Serrano K. Eckhard U. Fortelny N. Devine D.V. Overall C.M. TAILS N-terminomics of human platelets reveals pervasive metalloproteinase-dependent proteolytic processing in storage.Blood. 2014; 124 (25331112): e49-e6010.1182/blood-2014-04-569640Crossref PubMed Scopus (43) Google Scholar, 49Eckhard U. Marino G. Abbey S.R. Matthew I. Overall C.M. TAILS N-terminomic and proteomic datasets of healthy human dental pulp.Data Brief. 2015; 5 (26587561): 542-54810.1016/j.dib.2015.10.003Crossref PubMed Scopus (6) Google Scholar). Amino-terminal oriented mass spectrometry of substrates (ATOMS) is a highly-sensitive targeted approach for identifying mature protein N termini and protease-generated neo N termini in in vitro assays (50Doucet A. Overall C.M. Broad coverage identification of multiple proteolytic cleavage site sequences in complex high molecular weight proteins using quantitative proteomics as a complement to Edman sequen" @default.
- W2989661513 created "2019-12-05" @default.
- W2989661513 creator A5001781213 @default.
- W2989661513 creator A5034136678 @default.
- W2989661513 creator A5043538915 @default.
- W2989661513 creator A5051727056 @default.
- W2989661513 creator A5053252393 @default.
- W2989661513 creator A5056535622 @default.
- W2989661513 creator A5069167592 @default.
- W2989661513 creator A5071567586 @default.
- W2989661513 creator A5087432219 @default.
- W2989661513 date "2020-02-01" @default.
- W2989661513 modified "2023-10-17" @default.
- W2989661513 title "Moonlighting matrix metalloproteinase substrates: Enhancement of proinflammatory functions of extracellular tyrosyl-tRNA synthetase upon cleavage" @default.
- W2989661513 cites W1520058176 @default.
- W2989661513 cites W1531337498 @default.
- W2989661513 cites W1537367198 @default.
- W2989661513 cites W1615623738 @default.
- W2989661513 cites W1740337889 @default.
- W2989661513 cites W1750588665 @default.
- W2989661513 cites W1787366775 @default.
- W2989661513 cites W1832220924 @default.
- W2989661513 cites W1942779918 @default.
- W2989661513 cites W195327869 @default.
- W2989661513 cites W1964947310 @default.
- W2989661513 cites W1973467432 @default.
- W2989661513 cites W1977715435 @default.
- W2989661513 cites W1979338861 @default.
- W2989661513 cites W1981065289 @default.
- W2989661513 cites W1985502949 @default.
- W2989661513 cites W1986656413 @default.
- W2989661513 cites W1987825791 @default.
- W2989661513 cites W1989171068 @default.
- W2989661513 cites W1991625690 @default.
- W2989661513 cites W1992820573 @default.
- W2989661513 cites W1994990427 @default.
- W2989661513 cites W2000717209 @default.
- W2989661513 cites W2003893081 @default.
- W2989661513 cites W2004540849 @default.
- W2989661513 cites W2008014055 @default.
- W2989661513 cites W2008487520 @default.
- W2989661513 cites W2009021998 @default.
- W2989661513 cites W2012162957 @default.
- W2989661513 cites W2018011543 @default.
- W2989661513 cites W2030611695 @default.
- W2989661513 cites W2032751548 @default.
- W2989661513 cites W2033671240 @default.
- W2989661513 cites W2035002599 @default.
- W2989661513 cites W2035859590 @default.
- W2989661513 cites W2042444534 @default.
- W2989661513 cites W2050299992 @default.
- W2989661513 cites W2050804229 @default.
- W2989661513 cites W2050988968 @default.
- W2989661513 cites W2051250848 @default.
- W2989661513 cites W2052676309 @default.
- W2989661513 cites W2053430990 @default.
- W2989661513 cites W2056664023 @default.
- W2989661513 cites W2069508712 @default.
- W2989661513 cites W2069599749 @default.
- W2989661513 cites W2071874518 @default.
- W2989661513 cites W2079000409 @default.
- W2989661513 cites W2081282825 @default.
- W2989661513 cites W2087973465 @default.
- W2989661513 cites W2097033861 @default.
- W2989661513 cites W2098076093 @default.
- W2989661513 cites W2098108268 @default.
- W2989661513 cites W2111208057 @default.
- W2989661513 cites W2118136977 @default.
- W2989661513 cites W2123025858 @default.
- W2989661513 cites W2126066807 @default.
- W2989661513 cites W2126370825 @default.
- W2989661513 cites W2129036315 @default.
- W2989661513 cites W2130706354 @default.
- W2989661513 cites W2132290892 @default.
- W2989661513 cites W2134394781 @default.
- W2989661513 cites W2136990296 @default.
- W2989661513 cites W2146747110 @default.
- W2989661513 cites W2152913129 @default.
- W2989661513 cites W2154754261 @default.
- W2989661513 cites W2155093913 @default.
- W2989661513 cites W2156414024 @default.
- W2989661513 cites W2159923852 @default.
- W2989661513 cites W2160469764 @default.
- W2989661513 cites W2160949687 @default.
- W2989661513 cites W2164118220 @default.
- W2989661513 cites W2170092045 @default.
- W2989661513 cites W2187313419 @default.
- W2989661513 cites W2262898482 @default.
- W2989661513 cites W2395825039 @default.
- W2989661513 cites W2536301196 @default.
- W2989661513 cites W2537132940 @default.
- W2989661513 cites W2615493985 @default.
- W2989661513 cites W2766399995 @default.
- W2989661513 cites W2802920903 @default.
- W2989661513 cites W2808213842 @default.
- W2989661513 cites W2887723888 @default.
- W2989661513 cites W2899760200 @default.
- W2989661513 cites W2964054295 @default.