Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989663647> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2989663647 abstract "In this paper we present a method based on the existing convolution neural network architecture of AlexNet for the purpose of classifying microscopic images of B-ALL white blood cancer cells. This classification problem is especially challenging due to lack of conspicuous morphological differences between normal and malignant cell nuclei. Therefore, we designed a machine learning pipeline that focused on the texture of the staining images. Briefly, our approach divides the cell image into several overlapping tiles and trains a modified version of AlexNet on the tiles. Only those tiles are retained which are fully contained within the cell image. Several such networks were trained in an ensemble fashion using different training–validation data splits. For a given test image, the tiles are generated and ran through all the trained networks. The outputs of all networks along with the nucleus area are then fed into a simple decision tree, which generates the final prediction. The proposed method was developed in the context of the ISBI 2019 C-NMC challenge. The final testing results demonstrated a classification-weighted F1 score of 0.8307 using 2586 test images. The results demonstrate the possibility of making relatively accurate predictions using only local texture features." @default.
- W2989663647 created "2019-12-05" @default.
- W2989663647 creator A5025567439 @default.
- W2989663647 creator A5059881887 @default.
- W2989663647 date "2019-01-01" @default.
- W2989663647 modified "2023-09-27" @default.
- W2989663647 title "Classification of Normal Versus Malignant Cells in B-ALL Microscopic Images Based on a Tiled Convolution Neural Network Approach" @default.
- W2989663647 cites W1932469787 @default.
- W2989663647 cites W2011503872 @default.
- W2989663647 cites W2045888242 @default.
- W2989663647 cites W2114340167 @default.
- W2989663647 cites W22040386 @default.
- W2989663647 cites W2551596518 @default.
- W2989663647 cites W2567699853 @default.
- W2989663647 cites W2609584387 @default.
- W2989663647 cites W2611463039 @default.
- W2989663647 cites W2753825789 @default.
- W2989663647 cites W2761668583 @default.
- W2989663647 cites W2905502540 @default.
- W2989663647 doi "https://doi.org/10.1007/978-981-15-0798-4_11" @default.
- W2989663647 hasPublicationYear "2019" @default.
- W2989663647 type Work @default.
- W2989663647 sameAs 2989663647 @default.
- W2989663647 citedByCount "0" @default.
- W2989663647 crossrefType "book-chapter" @default.
- W2989663647 hasAuthorship W2989663647A5025567439 @default.
- W2989663647 hasAuthorship W2989663647A5059881887 @default.
- W2989663647 hasConcept C108583219 @default.
- W2989663647 hasConcept C115961682 @default.
- W2989663647 hasConcept C151730666 @default.
- W2989663647 hasConcept C153180895 @default.
- W2989663647 hasConcept C154945302 @default.
- W2989663647 hasConcept C160633673 @default.
- W2989663647 hasConcept C199360897 @default.
- W2989663647 hasConcept C2779343474 @default.
- W2989663647 hasConcept C31972630 @default.
- W2989663647 hasConcept C41008148 @default.
- W2989663647 hasConcept C43521106 @default.
- W2989663647 hasConcept C45347329 @default.
- W2989663647 hasConcept C50644808 @default.
- W2989663647 hasConcept C81363708 @default.
- W2989663647 hasConcept C86803240 @default.
- W2989663647 hasConceptScore W2989663647C108583219 @default.
- W2989663647 hasConceptScore W2989663647C115961682 @default.
- W2989663647 hasConceptScore W2989663647C151730666 @default.
- W2989663647 hasConceptScore W2989663647C153180895 @default.
- W2989663647 hasConceptScore W2989663647C154945302 @default.
- W2989663647 hasConceptScore W2989663647C160633673 @default.
- W2989663647 hasConceptScore W2989663647C199360897 @default.
- W2989663647 hasConceptScore W2989663647C2779343474 @default.
- W2989663647 hasConceptScore W2989663647C31972630 @default.
- W2989663647 hasConceptScore W2989663647C41008148 @default.
- W2989663647 hasConceptScore W2989663647C43521106 @default.
- W2989663647 hasConceptScore W2989663647C45347329 @default.
- W2989663647 hasConceptScore W2989663647C50644808 @default.
- W2989663647 hasConceptScore W2989663647C81363708 @default.
- W2989663647 hasConceptScore W2989663647C86803240 @default.
- W2989663647 hasLocation W29896636471 @default.
- W2989663647 hasOpenAccess W2989663647 @default.
- W2989663647 hasPrimaryLocation W29896636471 @default.
- W2989663647 hasRelatedWork W1502742740 @default.
- W2989663647 hasRelatedWork W2031262047 @default.
- W2989663647 hasRelatedWork W2182340639 @default.
- W2989663647 hasRelatedWork W2521021694 @default.
- W2989663647 hasRelatedWork W2790739947 @default.
- W2989663647 hasRelatedWork W2798891442 @default.
- W2989663647 hasRelatedWork W2944093511 @default.
- W2989663647 hasRelatedWork W2949189996 @default.
- W2989663647 hasRelatedWork W2951542077 @default.
- W2989663647 hasRelatedWork W2981268597 @default.
- W2989663647 hasRelatedWork W2994753452 @default.
- W2989663647 hasRelatedWork W3007388250 @default.
- W2989663647 hasRelatedWork W3045215719 @default.
- W2989663647 hasRelatedWork W3072197063 @default.
- W2989663647 hasRelatedWork W3075626592 @default.
- W2989663647 hasRelatedWork W3112665491 @default.
- W2989663647 hasRelatedWork W3170839381 @default.
- W2989663647 hasRelatedWork W2740827739 @default.
- W2989663647 hasRelatedWork W2936265970 @default.
- W2989663647 hasRelatedWork W2959798798 @default.
- W2989663647 isParatext "false" @default.
- W2989663647 isRetracted "false" @default.
- W2989663647 magId "2989663647" @default.
- W2989663647 workType "book-chapter" @default.