Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989671324> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2989671324 abstract "In this paper an optimal scheduling for energy resources and consumers for a single household is presented with the integration of renewable energy generation and battery storage systems. Based on the user's preference, three different optimization objectives are defined. The objectives are cost savings, reduction of CO2 emissions and user comfort. Two objectives are modeled as mixed integer linear programming (MILP) problems. The last one is modeled as a non-linear optimization problem. The approach furthermore utilizes several machine learning (ML) algorithms to forecast power generation and small load aggregation. The output of the ML forecast algorithms is therefore used as input for the optimization. The results show that the proposed approach is capable of optimizing energy supply at the level of a single household, based on user preferences for the objective of the optimization. In addition, better day-ahead planning of generation and demand is made possible by the use of a Convolutional Neural Network (CNN) together with other ML forecasting algorithms." @default.
- W2989671324 created "2019-12-05" @default.
- W2989671324 creator A5001055209 @default.
- W2989671324 creator A5001404289 @default.
- W2989671324 creator A5036696838 @default.
- W2989671324 creator A5063650061 @default.
- W2989671324 creator A5089847337 @default.
- W2989671324 date "2019-09-01" @default.
- W2989671324 modified "2023-10-18" @default.
- W2989671324 title "Optimal Energy Supply Scheduling for a Single Household: Integrating Machine Learning for Power Forecasting" @default.
- W2989671324 cites W1000589962 @default.
- W2989671324 cites W1968624619 @default.
- W2989671324 cites W1974804700 @default.
- W2989671324 cites W1992464062 @default.
- W2989671324 cites W2000821540 @default.
- W2989671324 cites W2033320993 @default.
- W2989671324 cites W2081858845 @default.
- W2989671324 cites W2209548289 @default.
- W2989671324 cites W2329597761 @default.
- W2989671324 cites W2511682328 @default.
- W2989671324 cites W2789876780 @default.
- W2989671324 cites W2902164008 @default.
- W2989671324 cites W2919115771 @default.
- W2989671324 cites W2970172805 @default.
- W2989671324 doi "https://doi.org/10.1109/isgteurope.2019.8905536" @default.
- W2989671324 hasPublicationYear "2019" @default.
- W2989671324 type Work @default.
- W2989671324 sameAs 2989671324 @default.
- W2989671324 citedByCount "5" @default.
- W2989671324 countsByYear W29896713242020 @default.
- W2989671324 countsByYear W29896713242022 @default.
- W2989671324 crossrefType "proceedings-article" @default.
- W2989671324 hasAuthorship W2989671324A5001055209 @default.
- W2989671324 hasAuthorship W2989671324A5001404289 @default.
- W2989671324 hasAuthorship W2989671324A5036696838 @default.
- W2989671324 hasAuthorship W2989671324A5063650061 @default.
- W2989671324 hasAuthorship W2989671324A5089847337 @default.
- W2989671324 hasConcept C10558101 @default.
- W2989671324 hasConcept C11413529 @default.
- W2989671324 hasConcept C119599485 @default.
- W2989671324 hasConcept C121332964 @default.
- W2989671324 hasConcept C126255220 @default.
- W2989671324 hasConcept C127413603 @default.
- W2989671324 hasConcept C137836250 @default.
- W2989671324 hasConcept C163258240 @default.
- W2989671324 hasConcept C188573790 @default.
- W2989671324 hasConcept C206658404 @default.
- W2989671324 hasConcept C206729178 @default.
- W2989671324 hasConcept C2779438525 @default.
- W2989671324 hasConcept C33923547 @default.
- W2989671324 hasConcept C41008148 @default.
- W2989671324 hasConcept C41045048 @default.
- W2989671324 hasConcept C423512 @default.
- W2989671324 hasConcept C56086750 @default.
- W2989671324 hasConcept C62520636 @default.
- W2989671324 hasConceptScore W2989671324C10558101 @default.
- W2989671324 hasConceptScore W2989671324C11413529 @default.
- W2989671324 hasConceptScore W2989671324C119599485 @default.
- W2989671324 hasConceptScore W2989671324C121332964 @default.
- W2989671324 hasConceptScore W2989671324C126255220 @default.
- W2989671324 hasConceptScore W2989671324C127413603 @default.
- W2989671324 hasConceptScore W2989671324C137836250 @default.
- W2989671324 hasConceptScore W2989671324C163258240 @default.
- W2989671324 hasConceptScore W2989671324C188573790 @default.
- W2989671324 hasConceptScore W2989671324C206658404 @default.
- W2989671324 hasConceptScore W2989671324C206729178 @default.
- W2989671324 hasConceptScore W2989671324C2779438525 @default.
- W2989671324 hasConceptScore W2989671324C33923547 @default.
- W2989671324 hasConceptScore W2989671324C41008148 @default.
- W2989671324 hasConceptScore W2989671324C41045048 @default.
- W2989671324 hasConceptScore W2989671324C423512 @default.
- W2989671324 hasConceptScore W2989671324C56086750 @default.
- W2989671324 hasConceptScore W2989671324C62520636 @default.
- W2989671324 hasLocation W29896713241 @default.
- W2989671324 hasOpenAccess W2989671324 @default.
- W2989671324 hasPrimaryLocation W29896713241 @default.
- W2989671324 hasRelatedWork W1555309241 @default.
- W2989671324 hasRelatedWork W2041669194 @default.
- W2989671324 hasRelatedWork W2110698131 @default.
- W2989671324 hasRelatedWork W2153836555 @default.
- W2989671324 hasRelatedWork W2163000239 @default.
- W2989671324 hasRelatedWork W2269950837 @default.
- W2989671324 hasRelatedWork W2480575007 @default.
- W2989671324 hasRelatedWork W2736069062 @default.
- W2989671324 hasRelatedWork W2751363208 @default.
- W2989671324 hasRelatedWork W3110240788 @default.
- W2989671324 isParatext "false" @default.
- W2989671324 isRetracted "false" @default.
- W2989671324 magId "2989671324" @default.
- W2989671324 workType "article" @default.