Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989671346> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2989671346 abstract "Every year average death of human being is 17.7 million caused by Heart Disease or Cardiovascular diseases (CVDs), which is 31% of all global deaths reflected in Survey of World Heart Day 2017 [33]. In September 2016, many countries have taken the various Global Hearts Initiative in prediction and diagnosis of heart Diseases at earlier stages so that it can be cure perfectly [5]. Many authors have studied in this filed to optimize the performance of various ML techniques using various approaches. In latest studies, many groups have uncovered that many optimization algorithm like Differential Evolution, Genetic Variants, and Particle Swarm optimization are associated with prediction algorithm like K-Nearest neighbor, Decision Tree, Neural Network, Support Vector machine, Logistic Regression etc. to make efficient medical system for CVDs. The Objective of our current study is to analyze the comparatively study of the ML techniques in terms of performance measure of different ML techniques that have been used by various authors in their research work in earlier studies of heart disease prediction and diagnosis process." @default.
- W2989671346 created "2019-12-05" @default.
- W2989671346 creator A5028628058 @default.
- W2989671346 creator A5054183825 @default.
- W2989671346 creator A5081663515 @default.
- W2989671346 date "2019-01-01" @default.
- W2989671346 modified "2023-09-27" @default.
- W2989671346 title "A Taxonomy on Machine Learning Based Techniques to Identify the Heart Disease" @default.
- W2989671346 cites W1656216251 @default.
- W2989671346 cites W1965587486 @default.
- W2989671346 cites W1970703917 @default.
- W2989671346 cites W1990480090 @default.
- W2989671346 cites W2035510150 @default.
- W2989671346 cites W2068677783 @default.
- W2989671346 cites W2082911909 @default.
- W2989671346 cites W2094415483 @default.
- W2989671346 cites W2095554003 @default.
- W2989671346 cites W2120716022 @default.
- W2989671346 cites W2531733772 @default.
- W2989671346 cites W2616438357 @default.
- W2989671346 cites W2750664433 @default.
- W2989671346 cites W2755582817 @default.
- W2989671346 cites W2782364997 @default.
- W2989671346 cites W2784168210 @default.
- W2989671346 cites W2800295500 @default.
- W2989671346 cites W2962826307 @default.
- W2989671346 doi "https://doi.org/10.1007/978-981-15-1718-1_2" @default.
- W2989671346 hasPublicationYear "2019" @default.
- W2989671346 type Work @default.
- W2989671346 sameAs 2989671346 @default.
- W2989671346 citedByCount "1" @default.
- W2989671346 countsByYear W29896713462021 @default.
- W2989671346 crossrefType "book-chapter" @default.
- W2989671346 hasAuthorship W2989671346A5028628058 @default.
- W2989671346 hasAuthorship W2989671346A5054183825 @default.
- W2989671346 hasAuthorship W2989671346A5081663515 @default.
- W2989671346 hasConcept C119857082 @default.
- W2989671346 hasConcept C12267149 @default.
- W2989671346 hasConcept C124101348 @default.
- W2989671346 hasConcept C142724271 @default.
- W2989671346 hasConcept C151956035 @default.
- W2989671346 hasConcept C154945302 @default.
- W2989671346 hasConcept C2779134260 @default.
- W2989671346 hasConcept C2780074459 @default.
- W2989671346 hasConcept C41008148 @default.
- W2989671346 hasConcept C50644808 @default.
- W2989671346 hasConcept C71924100 @default.
- W2989671346 hasConcept C74750220 @default.
- W2989671346 hasConcept C84525736 @default.
- W2989671346 hasConcept C85617194 @default.
- W2989671346 hasConcept C8880873 @default.
- W2989671346 hasConceptScore W2989671346C119857082 @default.
- W2989671346 hasConceptScore W2989671346C12267149 @default.
- W2989671346 hasConceptScore W2989671346C124101348 @default.
- W2989671346 hasConceptScore W2989671346C142724271 @default.
- W2989671346 hasConceptScore W2989671346C151956035 @default.
- W2989671346 hasConceptScore W2989671346C154945302 @default.
- W2989671346 hasConceptScore W2989671346C2779134260 @default.
- W2989671346 hasConceptScore W2989671346C2780074459 @default.
- W2989671346 hasConceptScore W2989671346C41008148 @default.
- W2989671346 hasConceptScore W2989671346C50644808 @default.
- W2989671346 hasConceptScore W2989671346C71924100 @default.
- W2989671346 hasConceptScore W2989671346C74750220 @default.
- W2989671346 hasConceptScore W2989671346C84525736 @default.
- W2989671346 hasConceptScore W2989671346C85617194 @default.
- W2989671346 hasConceptScore W2989671346C8880873 @default.
- W2989671346 hasLocation W29896713461 @default.
- W2989671346 hasOpenAccess W2989671346 @default.
- W2989671346 hasPrimaryLocation W29896713461 @default.
- W2989671346 hasRelatedWork W2084779923 @default.
- W2989671346 hasRelatedWork W2989671346 @default.
- W2989671346 hasRelatedWork W3193133655 @default.
- W2989671346 hasRelatedWork W3202447126 @default.
- W2989671346 hasRelatedWork W4213142596 @default.
- W2989671346 hasRelatedWork W4239706975 @default.
- W2989671346 hasRelatedWork W4246246790 @default.
- W2989671346 hasRelatedWork W4249746146 @default.
- W2989671346 hasRelatedWork W4251006959 @default.
- W2989671346 hasRelatedWork W4283762323 @default.
- W2989671346 isParatext "false" @default.
- W2989671346 isRetracted "false" @default.
- W2989671346 magId "2989671346" @default.
- W2989671346 workType "book-chapter" @default.