Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989673039> ?p ?o ?g. }
- W2989673039 endingPage "e8128" @default.
- W2989673039 startingPage "e8128" @default.
- W2989673039 abstract "Background Lung cancer has the highest morbidity and mortality worldwide, and lung adenocarcinoma (LADC) is the most common pathological subtype. Accumulating evidence suggests the tumor microenvironment (TME) is correlated with the tumor progress and the patient’s outcome. As the major components of TME, the tumor-infiltrated immune cells and stromal cells have attracted more and more attention. In this study, differentially expressed immune and stromal signature genes were used to construct a TME-related prognostic model for predicting the outcomes of LADC patients. Methods The expression profiles of LADC samples with clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) related to the TME of LADC were identified using TCGA dataset by Wilcoxon rank sum test. The prognostic effects of TME-related DEGs were analyzed using univariate Cox regression. Then, the least absolute shrinkage and selection operator (LASSO) regression was performed to reduce the overfit and the number of genes for further analysis. Next, the prognostic model was constructed by step multivariate Cox regression and risk score of each sample was calculated. Then, survival and Receiver Operating Characteristic (ROC) analyses were conducted to validate the model using TCGA and GEO datasets, respectively. The Kyoto Encyclopedia of Genes and Genomes analysis of gene signature was performed using Gene Set Enrichment Analysis (GSEA). Finally, the overall immune status, tumor purity and the expression profiles of HLA genes of high- and low-risk samples was further analyzed to reveal the potential mechanisms of prognostic effects of the model. Results A total of 93 TME-related DEGs were identified, of which 23 DEGs were up-regulated and 70 DEGs were down-regulated. The univariate cox analysis indicated that 23 DEGs has the prognostic effects, the hazard ratio ranged from 0.65 to 1.25 ( p < 0.05). Then, seven genes were screened out from the 23 DEGs by LASSO regression method and were further analyzed by step multivariate Cox regression. Finally, a three-gene (ADAM12, Bruton Tyrosine Kinase (BTK), ERG) signature was constructed, and ADAM12, BTK can be used as independent prognostic factors. The three-gene signature well stratified the LADC patients in both training (TCGA) and testing (GEO) datasets as high-risk and low-risk groups, the 3-year area under curve (AUC) of ROC curves of three GEO sets were 0.718 ( GSE3141 ), 0.646 ( GSE30219 ) and 0.643 ( GSE50081 ). The GSEA analysis indicated that highly expressed ADAM12, BTK, ERG mainly correlated with the activation of pathways involving in focal adhesion, immune regulation. The immune analysis indicated that the low-risk group has more immune activities and higher expression of HLA genes than that of the high-risk group. In sum, we identified and constructed a three TME-related DEGs signature, which could be used to predict the prognosis of LADC patients." @default.
- W2989673039 created "2019-12-05" @default.
- W2989673039 creator A5005400798 @default.
- W2989673039 creator A5042543197 @default.
- W2989673039 creator A5049660673 @default.
- W2989673039 date "2019-11-29" @default.
- W2989673039 modified "2023-10-14" @default.
- W2989673039 title "Identification of prognostic gene signature associated with microenvironment of lung adenocarcinoma" @default.
- W2989673039 cites W1989734503 @default.
- W2989673039 cites W1996912024 @default.
- W2989673039 cites W2021349501 @default.
- W2989673039 cites W2023241927 @default.
- W2989673039 cites W2030660118 @default.
- W2989673039 cites W2033278321 @default.
- W2989673039 cites W2035618305 @default.
- W2989673039 cites W2079488858 @default.
- W2989673039 cites W2088110734 @default.
- W2989673039 cites W2097360283 @default.
- W2989673039 cites W2100239923 @default.
- W2989673039 cites W2101037339 @default.
- W2989673039 cites W2116910749 @default.
- W2989673039 cites W2121335988 @default.
- W2989673039 cites W2130410032 @default.
- W2989673039 cites W2130430382 @default.
- W2989673039 cites W2159707944 @default.
- W2989673039 cites W2170490448 @default.
- W2989673039 cites W2221423709 @default.
- W2989673039 cites W2327437619 @default.
- W2989673039 cites W2462485532 @default.
- W2989673039 cites W2526309682 @default.
- W2989673039 cites W2529550497 @default.
- W2989673039 cites W2734220714 @default.
- W2989673039 cites W2751993670 @default.
- W2989673039 cites W2753295600 @default.
- W2989673039 cites W2783122422 @default.
- W2989673039 cites W2784371446 @default.
- W2989673039 cites W2800890007 @default.
- W2989673039 cites W2802896169 @default.
- W2989673039 cites W2806575069 @default.
- W2989673039 cites W2889646458 @default.
- W2989673039 cites W2900569176 @default.
- W2989673039 cites W2901515128 @default.
- W2989673039 cites W2907190362 @default.
- W2989673039 cites W2947232504 @default.
- W2989673039 cites W2952780037 @default.
- W2989673039 cites W4294541781 @default.
- W2989673039 cites W4384455562 @default.
- W2989673039 doi "https://doi.org/10.7717/peerj.8128" @default.
- W2989673039 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6886493" @default.
- W2989673039 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31803536" @default.
- W2989673039 hasPublicationYear "2019" @default.
- W2989673039 type Work @default.
- W2989673039 sameAs 2989673039 @default.
- W2989673039 citedByCount "57" @default.
- W2989673039 countsByYear W29896730392020 @default.
- W2989673039 countsByYear W29896730392021 @default.
- W2989673039 countsByYear W29896730392022 @default.
- W2989673039 countsByYear W29896730392023 @default.
- W2989673039 crossrefType "journal-article" @default.
- W2989673039 hasAuthorship W2989673039A5005400798 @default.
- W2989673039 hasAuthorship W2989673039A5042543197 @default.
- W2989673039 hasAuthorship W2989673039A5049660673 @default.
- W2989673039 hasBestOaLocation W29896730391 @default.
- W2989673039 hasConcept C104317684 @default.
- W2989673039 hasConcept C10515644 @default.
- W2989673039 hasConcept C121608353 @default.
- W2989673039 hasConcept C126322002 @default.
- W2989673039 hasConcept C143998085 @default.
- W2989673039 hasConcept C150194340 @default.
- W2989673039 hasConcept C16930146 @default.
- W2989673039 hasConcept C203014093 @default.
- W2989673039 hasConcept C2776107976 @default.
- W2989673039 hasConcept C2776256026 @default.
- W2989673039 hasConcept C2779733811 @default.
- W2989673039 hasConcept C2781182431 @default.
- W2989673039 hasConcept C502942594 @default.
- W2989673039 hasConcept C50382708 @default.
- W2989673039 hasConcept C54355233 @default.
- W2989673039 hasConcept C70721500 @default.
- W2989673039 hasConcept C71924100 @default.
- W2989673039 hasConcept C86803240 @default.
- W2989673039 hasConcept C8891405 @default.
- W2989673039 hasConceptScore W2989673039C104317684 @default.
- W2989673039 hasConceptScore W2989673039C10515644 @default.
- W2989673039 hasConceptScore W2989673039C121608353 @default.
- W2989673039 hasConceptScore W2989673039C126322002 @default.
- W2989673039 hasConceptScore W2989673039C143998085 @default.
- W2989673039 hasConceptScore W2989673039C150194340 @default.
- W2989673039 hasConceptScore W2989673039C16930146 @default.
- W2989673039 hasConceptScore W2989673039C203014093 @default.
- W2989673039 hasConceptScore W2989673039C2776107976 @default.
- W2989673039 hasConceptScore W2989673039C2776256026 @default.
- W2989673039 hasConceptScore W2989673039C2779733811 @default.
- W2989673039 hasConceptScore W2989673039C2781182431 @default.
- W2989673039 hasConceptScore W2989673039C502942594 @default.
- W2989673039 hasConceptScore W2989673039C50382708 @default.
- W2989673039 hasConceptScore W2989673039C54355233 @default.
- W2989673039 hasConceptScore W2989673039C70721500 @default.