Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989679905> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2989679905 abstract "Cancer is one of the diseases the human race has been battling against. Several researches and technologies are being updated and implemented for the detection and cure of this obliterating disease. The cure of this disease is significantly dependent on its early detection when the tumor is in the early stage and is detectable. Thus, relative classification criteria would benefit the radiologist in determining the malignancy at an early stage. With this view, this current chapter will help the radiologist as well as oncological physician to quickly identify and determine the stage of cancer as well as whether the tumor is being either malignant or benign. The texture feature estimation and morphological analysis have been done with lot of chest X-ray images such as pulmonary nodule (PN), non-pulmonary nodule (NPN) and unclassified (tuberculosis, pneumonia, etc.) images retrieved from the Japanese Society of Radiological Technology (JSRT), public biomedical database. This feature is then applied to expert classification analysis system such as artificial neural network (ANN). This chapter implements classification analysis procedures to improvise the image classification of X-ray images, which will enhance the detection probability at a very early stage. Thirty percent of radiologist fails to detect the malignancy in the beginning stage. There are also possibilities of reducing false-positive results. These false-positive (FP) results can be due to inter-observatory analysis errors resulting from different faults in rib vessel and its structuring. Thus, the reduction in false-positive (FP) images and the increased true-positive (TP) images is important for an accurate analysis of the X-ray." @default.
- W2989679905 created "2019-12-05" @default.
- W2989679905 creator A5007274860 @default.
- W2989679905 creator A5008399306 @default.
- W2989679905 creator A5052694489 @default.
- W2989679905 date "2019-11-30" @default.
- W2989679905 modified "2023-09-28" @default.
- W2989679905 title "Use of Artificial Neural Network for Abnormality Detection in Medical Images" @default.
- W2989679905 cites W2137865578 @default.
- W2989679905 cites W2169635364 @default.
- W2989679905 cites W2599828240 @default.
- W2989679905 cites W2725268319 @default.
- W2989679905 cites W2759875570 @default.
- W2989679905 cites W2765641186 @default.
- W2989679905 cites W2766293803 @default.
- W2989679905 cites W2800303032 @default.
- W2989679905 cites W2921910948 @default.
- W2989679905 cites W2946025406 @default.
- W2989679905 cites W3104897464 @default.
- W2989679905 cites W2131542724 @default.
- W2989679905 doi "https://doi.org/10.1007/978-981-15-0994-0_1" @default.
- W2989679905 hasPublicationYear "2019" @default.
- W2989679905 type Work @default.
- W2989679905 sameAs 2989679905 @default.
- W2989679905 citedByCount "1" @default.
- W2989679905 countsByYear W29896799052020 @default.
- W2989679905 crossrefType "book-chapter" @default.
- W2989679905 hasAuthorship W2989679905A5007274860 @default.
- W2989679905 hasAuthorship W2989679905A5008399306 @default.
- W2989679905 hasAuthorship W2989679905A5052694489 @default.
- W2989679905 hasConcept C118552586 @default.
- W2989679905 hasConcept C126838900 @default.
- W2989679905 hasConcept C138885662 @default.
- W2989679905 hasConcept C142724271 @default.
- W2989679905 hasConcept C146357865 @default.
- W2989679905 hasConcept C151730666 @default.
- W2989679905 hasConcept C153180895 @default.
- W2989679905 hasConcept C154945302 @default.
- W2989679905 hasConcept C2776401178 @default.
- W2989679905 hasConcept C2779399171 @default.
- W2989679905 hasConcept C31601959 @default.
- W2989679905 hasConcept C41008148 @default.
- W2989679905 hasConcept C41895202 @default.
- W2989679905 hasConcept C50965678 @default.
- W2989679905 hasConcept C71924100 @default.
- W2989679905 hasConcept C86803240 @default.
- W2989679905 hasConceptScore W2989679905C118552586 @default.
- W2989679905 hasConceptScore W2989679905C126838900 @default.
- W2989679905 hasConceptScore W2989679905C138885662 @default.
- W2989679905 hasConceptScore W2989679905C142724271 @default.
- W2989679905 hasConceptScore W2989679905C146357865 @default.
- W2989679905 hasConceptScore W2989679905C151730666 @default.
- W2989679905 hasConceptScore W2989679905C153180895 @default.
- W2989679905 hasConceptScore W2989679905C154945302 @default.
- W2989679905 hasConceptScore W2989679905C2776401178 @default.
- W2989679905 hasConceptScore W2989679905C2779399171 @default.
- W2989679905 hasConceptScore W2989679905C31601959 @default.
- W2989679905 hasConceptScore W2989679905C41008148 @default.
- W2989679905 hasConceptScore W2989679905C41895202 @default.
- W2989679905 hasConceptScore W2989679905C50965678 @default.
- W2989679905 hasConceptScore W2989679905C71924100 @default.
- W2989679905 hasConceptScore W2989679905C86803240 @default.
- W2989679905 hasLocation W29896799051 @default.
- W2989679905 hasOpenAccess W2989679905 @default.
- W2989679905 hasPrimaryLocation W29896799051 @default.
- W2989679905 hasRelatedWork W1089315 @default.
- W2989679905 hasRelatedWork W1306813 @default.
- W2989679905 hasRelatedWork W2988963 @default.
- W2989679905 hasRelatedWork W4977148 @default.
- W2989679905 hasRelatedWork W5053613 @default.
- W2989679905 hasRelatedWork W5275551 @default.
- W2989679905 hasRelatedWork W5535156 @default.
- W2989679905 hasRelatedWork W7524428 @default.
- W2989679905 hasRelatedWork W844961 @default.
- W2989679905 hasRelatedWork W8656678 @default.
- W2989679905 isParatext "false" @default.
- W2989679905 isRetracted "false" @default.
- W2989679905 magId "2989679905" @default.
- W2989679905 workType "book-chapter" @default.