Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989685001> ?p ?o ?g. }
- W2989685001 endingPage "5012" @default.
- W2989685001 startingPage "5002" @default.
- W2989685001 abstract "Developing Janus kinase 2 (JAK2) inhibitors has become a significant focus for small-molecule drug discovery programs in recent years because the inhibition of JAK2 may be an effective approach for the treatment of myeloproliferative neoplasm. Here, based on three different types of fingerprints and Extreme Gradient Boosting (XGBoost) methods, we developed three groups of models in that each group contained a classification model and a regression model to accurately acquire highly potent JAK2 kinase inhibitors from the ZINC database. The three classification models resulted in Matthews correlation coefficients of 0.97, 0.94, and 0.97. Docking methods including Glide and AutoDock Vina were employed to evaluate the virtual screening effectiveness of our classification models. The R2 of three regression models were 0.80, 0.78, and 0.80. Finally, 13 compounds were biologically evaluated, and the results showed that the IC50 values of six compounds were identified to be less than 100 nM. Among them, compound 9 showed high activity and selectivity in that its IC50 value was less than 1 nM against JAK2 while 694 nM against JAK3. The strategy developed may be generally applicable in ligand-based virtual screening campaigns." @default.
- W2989685001 created "2019-12-05" @default.
- W2989685001 creator A5016990052 @default.
- W2989685001 creator A5042669377 @default.
- W2989685001 creator A5043136617 @default.
- W2989685001 creator A5049474191 @default.
- W2989685001 creator A5063913604 @default.
- W2989685001 creator A5067800672 @default.
- W2989685001 creator A5074853958 @default.
- W2989685001 date "2019-11-20" @default.
- W2989685001 modified "2023-09-24" @default.
- W2989685001 title "Machine Learning Models Based on Molecular Fingerprints and an Extreme Gradient Boosting Method Lead to the Discovery of JAK2 Inhibitors" @default.
- W2989685001 cites W1968319881 @default.
- W2989685001 cites W1980568348 @default.
- W2989685001 cites W1983236550 @default.
- W2989685001 cites W1984428215 @default.
- W2989685001 cites W1988037271 @default.
- W2989685001 cites W1988195734 @default.
- W2989685001 cites W1993623542 @default.
- W2989685001 cites W1995629248 @default.
- W2989685001 cites W1996851544 @default.
- W2989685001 cites W2016650657 @default.
- W2989685001 cites W2027482274 @default.
- W2989685001 cites W2043509228 @default.
- W2989685001 cites W2049145190 @default.
- W2989685001 cites W2057360098 @default.
- W2989685001 cites W2071105442 @default.
- W2989685001 cites W2079645940 @default.
- W2989685001 cites W2085504513 @default.
- W2989685001 cites W2087155419 @default.
- W2989685001 cites W2111865786 @default.
- W2989685001 cites W2128040385 @default.
- W2989685001 cites W2131666890 @default.
- W2989685001 cites W2134967712 @default.
- W2989685001 cites W2144664431 @default.
- W2989685001 cites W2149308034 @default.
- W2989685001 cites W2154351585 @default.
- W2989685001 cites W2163087340 @default.
- W2989685001 cites W2339315823 @default.
- W2989685001 cites W2444392663 @default.
- W2989685001 cites W2511675819 @default.
- W2989685001 cites W2556014018 @default.
- W2989685001 cites W2556851635 @default.
- W2989685001 cites W2565360718 @default.
- W2989685001 cites W2618530766 @default.
- W2989685001 cites W2619370543 @default.
- W2989685001 cites W2769898018 @default.
- W2989685001 cites W2777416523 @default.
- W2989685001 cites W2781491897 @default.
- W2989685001 cites W2784213390 @default.
- W2989685001 cites W2807030217 @default.
- W2989685001 cites W2810939826 @default.
- W2989685001 cites W2901682317 @default.
- W2989685001 cites W2901909430 @default.
- W2989685001 cites W2905487000 @default.
- W2989685001 cites W2911964244 @default.
- W2989685001 cites W2914969288 @default.
- W2989685001 cites W2919115771 @default.
- W2989685001 cites W2963042536 @default.
- W2989685001 cites W3102476541 @default.
- W2989685001 cites W3104705366 @default.
- W2989685001 cites W4239510810 @default.
- W2989685001 cites W4244757272 @default.
- W2989685001 doi "https://doi.org/10.1021/acs.jcim.9b00798" @default.
- W2989685001 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31746601" @default.
- W2989685001 hasPublicationYear "2019" @default.
- W2989685001 type Work @default.
- W2989685001 sameAs 2989685001 @default.
- W2989685001 citedByCount "35" @default.
- W2989685001 countsByYear W29896850012020 @default.
- W2989685001 countsByYear W29896850012021 @default.
- W2989685001 countsByYear W29896850012022 @default.
- W2989685001 countsByYear W29896850012023 @default.
- W2989685001 crossrefType "journal-article" @default.
- W2989685001 hasAuthorship W2989685001A5016990052 @default.
- W2989685001 hasAuthorship W2989685001A5042669377 @default.
- W2989685001 hasAuthorship W2989685001A5043136617 @default.
- W2989685001 hasAuthorship W2989685001A5049474191 @default.
- W2989685001 hasAuthorship W2989685001A5063913604 @default.
- W2989685001 hasAuthorship W2989685001A5067800672 @default.
- W2989685001 hasAuthorship W2989685001A5074853958 @default.
- W2989685001 hasConcept C103697762 @default.
- W2989685001 hasConcept C105795698 @default.
- W2989685001 hasConcept C119857082 @default.
- W2989685001 hasConcept C154945302 @default.
- W2989685001 hasConcept C159110408 @default.
- W2989685001 hasConcept C169258074 @default.
- W2989685001 hasConcept C184235292 @default.
- W2989685001 hasConcept C185592680 @default.
- W2989685001 hasConcept C202751555 @default.
- W2989685001 hasConcept C2777752497 @default.
- W2989685001 hasConcept C32465701 @default.
- W2989685001 hasConcept C33923547 @default.
- W2989685001 hasConcept C41008148 @default.
- W2989685001 hasConcept C41685203 @default.
- W2989685001 hasConcept C46686674 @default.
- W2989685001 hasConcept C55493867 @default.
- W2989685001 hasConcept C70153297 @default.