Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989693566> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2989693566 abstract "Mobile cellular users traveling in city buses are experiencing poor quality of signals due to the interference and the large number of mobile devices. To enhance the Quality-of-Service (QoS), deployment of small cell networks in city buses is a promising solution. The deployment of small cells in vehicular environment makes the resource allocation more challenging because of the dynamic interference relationships experienced by them. Therefore, resource allocation in vehicular environment within moving small cells (MSCs) needs to be handled carefully. In this study, we investigate the problem of resource allocation in city bus transit system with multiple routes. Then, we propose a Percentage Threshold Interference Graph (PTIG) based allocation of resources to MSCs in a network. City buses of multiple routes travel with variable speed and may share some of the same road segments which make it difficult to extract the exact interference patterns between them. Therefore, Long Short Term Memory (LSTM) neural networks are used to predict the city buses locations. The predicted locations of city buses are then used to generate PTIG by finding the dynamic interference relationship between MSCs. Graph coloring algorithm is used to allocate the resources to PTIG. Numerical results are presented to show the comparison of resource allocation using PTIG and Time Interval based Interference Graph (TIIG) in terms of resource block utilization and time complexity." @default.
- W2989693566 created "2019-12-05" @default.
- W2989693566 creator A5007351384 @default.
- W2989693566 creator A5020975697 @default.
- W2989693566 creator A5022279891 @default.
- W2989693566 creator A5058266644 @default.
- W2989693566 creator A5071596869 @default.
- W2989693566 date "2019-09-01" @default.
- W2989693566 modified "2023-10-18" @default.
- W2989693566 title "Resource Allocation in Moving Small Cell Network using Deep Learning based Interference Determination" @default.
- W2989693566 cites W1567061823 @default.
- W2989693566 cites W1840372910 @default.
- W2989693566 cites W1964202282 @default.
- W2989693566 cites W2109159967 @default.
- W2989693566 cites W2130354838 @default.
- W2989693566 cites W2544088605 @default.
- W2989693566 cites W2592524068 @default.
- W2989693566 cites W2596685955 @default.
- W2989693566 cites W2625544517 @default.
- W2989693566 cites W2782586786 @default.
- W2989693566 cites W2787288190 @default.
- W2989693566 cites W2891270813 @default.
- W2989693566 cites W2912086750 @default.
- W2989693566 cites W2942169676 @default.
- W2989693566 doi "https://doi.org/10.1109/pimrc.2019.8904401" @default.
- W2989693566 hasPublicationYear "2019" @default.
- W2989693566 type Work @default.
- W2989693566 sameAs 2989693566 @default.
- W2989693566 citedByCount "15" @default.
- W2989693566 countsByYear W29896935662019 @default.
- W2989693566 countsByYear W29896935662020 @default.
- W2989693566 countsByYear W29896935662021 @default.
- W2989693566 countsByYear W29896935662022 @default.
- W2989693566 crossrefType "proceedings-article" @default.
- W2989693566 hasAuthorship W2989693566A5007351384 @default.
- W2989693566 hasAuthorship W2989693566A5020975697 @default.
- W2989693566 hasAuthorship W2989693566A5022279891 @default.
- W2989693566 hasAuthorship W2989693566A5058266644 @default.
- W2989693566 hasAuthorship W2989693566A5071596869 @default.
- W2989693566 hasConcept C105339364 @default.
- W2989693566 hasConcept C111919701 @default.
- W2989693566 hasConcept C127162648 @default.
- W2989693566 hasConcept C132525143 @default.
- W2989693566 hasConcept C153646914 @default.
- W2989693566 hasConcept C29202148 @default.
- W2989693566 hasConcept C31258907 @default.
- W2989693566 hasConcept C32022120 @default.
- W2989693566 hasConcept C41008148 @default.
- W2989693566 hasConcept C5119721 @default.
- W2989693566 hasConcept C80444323 @default.
- W2989693566 hasConceptScore W2989693566C105339364 @default.
- W2989693566 hasConceptScore W2989693566C111919701 @default.
- W2989693566 hasConceptScore W2989693566C127162648 @default.
- W2989693566 hasConceptScore W2989693566C132525143 @default.
- W2989693566 hasConceptScore W2989693566C153646914 @default.
- W2989693566 hasConceptScore W2989693566C29202148 @default.
- W2989693566 hasConceptScore W2989693566C31258907 @default.
- W2989693566 hasConceptScore W2989693566C32022120 @default.
- W2989693566 hasConceptScore W2989693566C41008148 @default.
- W2989693566 hasConceptScore W2989693566C5119721 @default.
- W2989693566 hasConceptScore W2989693566C80444323 @default.
- W2989693566 hasLocation W29896935661 @default.
- W2989693566 hasOpenAccess W2989693566 @default.
- W2989693566 hasPrimaryLocation W29896935661 @default.
- W2989693566 hasRelatedWork W168929752 @default.
- W2989693566 hasRelatedWork W2026134574 @default.
- W2989693566 hasRelatedWork W2155545232 @default.
- W2989693566 hasRelatedWork W2164591489 @default.
- W2989693566 hasRelatedWork W2167180121 @default.
- W2989693566 hasRelatedWork W2167259434 @default.
- W2989693566 hasRelatedWork W2329737720 @default.
- W2989693566 hasRelatedWork W2537564843 @default.
- W2989693566 hasRelatedWork W2905374723 @default.
- W2989693566 hasRelatedWork W2995391442 @default.
- W2989693566 isParatext "false" @default.
- W2989693566 isRetracted "false" @default.
- W2989693566 magId "2989693566" @default.
- W2989693566 workType "article" @default.