Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989700724> ?p ?o ?g. }
- W2989700724 endingPage "135161" @default.
- W2989700724 startingPage "135161" @default.
- W2989700724 abstract "Flash-floods are increasingly recognized as a frequent natural hazard worldwide. Iran has been among the most devastated regions affected by the major floods. While the temporal flash-flood forecasting models are mainly developed for warning systems, the models for assessing hazardous areas can greatly contribute to adaptation and mitigation policy-making and disaster risk reduction. Former researches in the flash-flood hazard mapping have heightened the urge for the advancement of more accurate models. Thus, the current research proposes the state-of-the-art ensemble models of boosted generalized linear model (GLMBoost) and random forest (RF), and Bayesian generalized linear model (BayesGLM) methods for higher performance modeling. Furthermore, a pre-processing method, namely simulated annealing (SA), is used to eliminate redundant variables from the modeling process. Results of the modeling based on the hit and miss analysis indicates high performance for both models (accuracy = 90–92%, Kappa = 79–84%, Success ratio = 94–96%, Threat score = 80–84%, and Heidke skill score = 79–84%). The variables of distance from the stream, vegetation, drainage density, land use, and elevation have shown more contribution among others for modeling the flash-flood. The results of this study can significantly facilitate mapping the hazardous areas and further assist watershed managers to control and remediate induced damages of flood in the data-scarce regions." @default.
- W2989700724 created "2019-12-05" @default.
- W2989700724 creator A5030321903 @default.
- W2989700724 creator A5045936239 @default.
- W2989700724 creator A5072746309 @default.
- W2989700724 creator A5073111319 @default.
- W2989700724 creator A5083772809 @default.
- W2989700724 creator A5086550972 @default.
- W2989700724 creator A5086842570 @default.
- W2989700724 date "2020-04-01" @default.
- W2989700724 modified "2023-10-18" @default.
- W2989700724 title "Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method" @default.
- W2989700724 cites W1534477342 @default.
- W2989700724 cites W1689307259 @default.
- W2989700724 cites W1980878714 @default.
- W2989700724 cites W1982206826 @default.
- W2989700724 cites W1985288162 @default.
- W2989700724 cites W1996585131 @default.
- W2989700724 cites W2004726557 @default.
- W2989700724 cites W2022811154 @default.
- W2989700724 cites W2022944615 @default.
- W2989700724 cites W2027386095 @default.
- W2989700724 cites W2029866800 @default.
- W2989700724 cites W2031126475 @default.
- W2989700724 cites W2035446310 @default.
- W2989700724 cites W2060430093 @default.
- W2989700724 cites W2063977422 @default.
- W2989700724 cites W2064333511 @default.
- W2989700724 cites W2066363435 @default.
- W2989700724 cites W2067414891 @default.
- W2989700724 cites W2073698560 @default.
- W2989700724 cites W2088883866 @default.
- W2989700724 cites W2095706676 @default.
- W2989700724 cites W2101678239 @default.
- W2989700724 cites W2110017687 @default.
- W2989700724 cites W2112688502 @default.
- W2989700724 cites W2113242816 @default.
- W2989700724 cites W2121885753 @default.
- W2989700724 cites W2151804120 @default.
- W2989700724 cites W2160953640 @default.
- W2989700724 cites W2307614369 @default.
- W2989700724 cites W2309165934 @default.
- W2989700724 cites W2327164763 @default.
- W2989700724 cites W2336807904 @default.
- W2989700724 cites W2442030880 @default.
- W2989700724 cites W2460515451 @default.
- W2989700724 cites W2507786947 @default.
- W2989700724 cites W2567326027 @default.
- W2989700724 cites W2587847980 @default.
- W2989700724 cites W2590700275 @default.
- W2989700724 cites W2594235056 @default.
- W2989700724 cites W2604199742 @default.
- W2989700724 cites W2604912589 @default.
- W2989700724 cites W2606804832 @default.
- W2989700724 cites W2609642564 @default.
- W2989700724 cites W2626354796 @default.
- W2989700724 cites W2640557513 @default.
- W2989700724 cites W2730171111 @default.
- W2989700724 cites W2744763689 @default.
- W2989700724 cites W2755722299 @default.
- W2989700724 cites W2761698665 @default.
- W2989700724 cites W2765490610 @default.
- W2989700724 cites W2765742909 @default.
- W2989700724 cites W2765944757 @default.
- W2989700724 cites W2766228856 @default.
- W2989700724 cites W2766582093 @default.
- W2989700724 cites W2769597746 @default.
- W2989700724 cites W2775325784 @default.
- W2989700724 cites W2791328889 @default.
- W2989700724 cites W2793849561 @default.
- W2989700724 cites W2794603472 @default.
- W2989700724 cites W2796299618 @default.
- W2989700724 cites W2802893388 @default.
- W2989700724 cites W2806959023 @default.
- W2989700724 cites W2808393393 @default.
- W2989700724 cites W2808905074 @default.
- W2989700724 cites W2884138079 @default.
- W2989700724 cites W2885080709 @default.
- W2989700724 cites W2887223098 @default.
- W2989700724 cites W2889148872 @default.
- W2989700724 cites W2894489221 @default.
- W2989700724 cites W2895196240 @default.
- W2989700724 cites W2895514282 @default.
- W2989700724 cites W2899345956 @default.
- W2989700724 cites W2900462747 @default.
- W2989700724 cites W2900679048 @default.
- W2989700724 cites W2901768007 @default.
- W2989700724 cites W2903266193 @default.
- W2989700724 cites W2907526476 @default.
- W2989700724 cites W2907566391 @default.
- W2989700724 cites W2911964244 @default.
- W2989700724 cites W2912730226 @default.
- W2989700724 cites W2916915995 @default.
- W2989700724 cites W2920199254 @default.
- W2989700724 cites W2921701405 @default.
- W2989700724 cites W2922019787 @default.
- W2989700724 cites W2923683857 @default.
- W2989700724 cites W2927539500 @default.