Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989728097> ?p ?o ?g. }
- W2989728097 abstract "Abstract Background Cytokines are a class of small proteins that act as chemical messengers and play a significant role in essential cellular processes including immunity regulation, hematopoiesis, and inflammation. As one important family of cytokines, tumor necrosis factors have association with the regulation of a various biological processes such as proliferation and differentiation of cells, apoptosis, lipid metabolism, and coagulation. The implication of these cytokines can also be seen in various diseases such as insulin resistance, autoimmune diseases, and cancer. Considering the interdependence between this kind of cytokine and others, classifying tumor necrosis factors from other cytokines is a challenge for biological scientists. In this research, we employed a word embedding technique to create hybrid features which was proved to efficiently identify tumor necrosis factors given cytokine sequences. We segmented each protein sequence into protein words and created corresponding word embedding for each word. Then, word embedding-based vector for each sequence was created and input into machine learning classification models. When extracting feature sets, we not only diversified segmentation sizes of protein sequence but also conducted different combinations among split grams to find the best features which generated the optimal prediction. Furthermore, our methodology follows Chou’s 5-step rules to build a reliable classification tool. Results With our proposed hybrid features, prediction models obtain more promising performance compared to seven prominent sequenced-based feature kinds. Results from 10 independent runs on the surveyed dataset show that on an average, our optimal models obtain an area under the curve of 0.984 and 0.998 on 5-fold cross-validation and independent test, respectively. Conclusions These results show that biologists can use our model to identify tumor necrosis factors from other cytokines efficiently. Moreover, this study proves that natural language processing techniques can be applied reasonably to help biologists solve bioinformatics problems efficiently." @default.
- W2989728097 created "2019-12-05" @default.
- W2989728097 creator A5008287088 @default.
- W2989728097 creator A5010168254 @default.
- W2989728097 creator A5017977962 @default.
- W2989728097 creator A5026899391 @default.
- W2989728097 creator A5066420667 @default.
- W2989728097 date "2019-12-01" @default.
- W2989728097 modified "2023-10-17" @default.
- W2989728097 title "TNFPred: Identifying tumor necrosis factors using hybrid features based on word embeddings" @default.
- W2989728097 cites W1598255190 @default.
- W2989728097 cites W1976526581 @default.
- W2989728097 cites W1989925698 @default.
- W2989728097 cites W2019137678 @default.
- W2989728097 cites W2020864976 @default.
- W2989728097 cites W2028549892 @default.
- W2989728097 cites W2033882650 @default.
- W2989728097 cites W2034070267 @default.
- W2989728097 cites W2037347574 @default.
- W2989728097 cites W2045747807 @default.
- W2989728097 cites W2050237494 @default.
- W2989728097 cites W2055981215 @default.
- W2989728097 cites W2060300932 @default.
- W2989728097 cites W2073788442 @default.
- W2989728097 cites W2087798692 @default.
- W2989728097 cites W2095013915 @default.
- W2989728097 cites W2106171259 @default.
- W2989728097 cites W2106375006 @default.
- W2989728097 cites W2154139219 @default.
- W2989728097 cites W2158698691 @default.
- W2989728097 cites W2162233306 @default.
- W2989728097 cites W2171831844 @default.
- W2989728097 cites W2194381613 @default.
- W2989728097 cites W2197530892 @default.
- W2989728097 cites W2250879510 @default.
- W2989728097 cites W2252143362 @default.
- W2989728097 cites W2497764970 @default.
- W2989728097 cites W2584413035 @default.
- W2989728097 cites W2607378088 @default.
- W2989728097 cites W2749697459 @default.
- W2989728097 cites W2792363117 @default.
- W2989728097 cites W2797060233 @default.
- W2989728097 cites W2806519959 @default.
- W2989728097 cites W2875515511 @default.
- W2989728097 cites W2885697586 @default.
- W2989728097 cites W2891100097 @default.
- W2989728097 cites W2895576137 @default.
- W2989728097 cites W2897596315 @default.
- W2989728097 cites W2915815599 @default.
- W2989728097 cites W2931503046 @default.
- W2989728097 cites W2941000714 @default.
- W2989728097 cites W2944682099 @default.
- W2989728097 cites W339865234 @default.
- W2989728097 doi "https://doi.org/10.1101/860791" @default.
- W2989728097 hasPublicationYear "2019" @default.
- W2989728097 type Work @default.
- W2989728097 sameAs 2989728097 @default.
- W2989728097 citedByCount "0" @default.
- W2989728097 crossrefType "posted-content" @default.
- W2989728097 hasAuthorship W2989728097A5008287088 @default.
- W2989728097 hasAuthorship W2989728097A5010168254 @default.
- W2989728097 hasAuthorship W2989728097A5017977962 @default.
- W2989728097 hasAuthorship W2989728097A5026899391 @default.
- W2989728097 hasAuthorship W2989728097A5066420667 @default.
- W2989728097 hasBestOaLocation W29897280971 @default.
- W2989728097 hasConcept C138885662 @default.
- W2989728097 hasConcept C154945302 @default.
- W2989728097 hasConcept C17991360 @default.
- W2989728097 hasConcept C203014093 @default.
- W2989728097 hasConcept C2524010 @default.
- W2989728097 hasConcept C2776401178 @default.
- W2989728097 hasConcept C2777462759 @default.
- W2989728097 hasConcept C2778112365 @default.
- W2989728097 hasConcept C2778690821 @default.
- W2989728097 hasConcept C33923547 @default.
- W2989728097 hasConcept C41008148 @default.
- W2989728097 hasConcept C41608201 @default.
- W2989728097 hasConcept C41895202 @default.
- W2989728097 hasConcept C54355233 @default.
- W2989728097 hasConcept C70721500 @default.
- W2989728097 hasConcept C86803240 @default.
- W2989728097 hasConcept C90805587 @default.
- W2989728097 hasConceptScore W2989728097C138885662 @default.
- W2989728097 hasConceptScore W2989728097C154945302 @default.
- W2989728097 hasConceptScore W2989728097C17991360 @default.
- W2989728097 hasConceptScore W2989728097C203014093 @default.
- W2989728097 hasConceptScore W2989728097C2524010 @default.
- W2989728097 hasConceptScore W2989728097C2776401178 @default.
- W2989728097 hasConceptScore W2989728097C2777462759 @default.
- W2989728097 hasConceptScore W2989728097C2778112365 @default.
- W2989728097 hasConceptScore W2989728097C2778690821 @default.
- W2989728097 hasConceptScore W2989728097C33923547 @default.
- W2989728097 hasConceptScore W2989728097C41008148 @default.
- W2989728097 hasConceptScore W2989728097C41608201 @default.
- W2989728097 hasConceptScore W2989728097C41895202 @default.
- W2989728097 hasConceptScore W2989728097C54355233 @default.
- W2989728097 hasConceptScore W2989728097C70721500 @default.
- W2989728097 hasConceptScore W2989728097C86803240 @default.
- W2989728097 hasConceptScore W2989728097C90805587 @default.
- W2989728097 hasLocation W29897280971 @default.