Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989735360> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2989735360 endingPage "227" @default.
- W2989735360 startingPage "219" @default.
- W2989735360 abstract "Cemented hydraulic backfill (CHB) is widely used in underground mine backfilling, especially when regional stability is required. One of the critical backfill properties is uniaxial compressive strength (UCS), the maximum axial compressive stress that the sample can withstand before failing. CHB is expected to have a certain UCS in a specific time so that the adjacent stope can be mined out according to the production plan. To reach the desired strength in a specific time, there exit parameters which are must be well adjusted. To increase the strength of CHB, either the cement dosage could be increased or a longer curing time could be allowed using less cement and more tailings. However, increasing cement content significantly increases the operational mining cost. If there is enough curing time for the planned production then less cement and/or more tailings can be added to get the desired strength at a reduced cost. This paper investigates the applicability of artificial intelligence (AI) algorithms to optimise key parameters of CHB design so that the desired strength would be reached in a specific time. Genetic programming (GP) is used to generate models relating the UCS factor to CHB’s key parameters using an experimental database. The generated GP models are then used by a particle swarm optimisation (PSO) algorithm in order to determine the amounts of CHB’s parameters which can satisfy the specified UCS conditions in a planned time. Some examples are presented to emphasize the benefits of the optimization of CHB mixture design. Using the presented approach, it is possible to optimize CHB design parameters by considering mine production plan, requiring certain UCS at specific ages, and to reduce the cost." @default.
- W2989735360 created "2019-12-05" @default.
- W2989735360 creator A5011087058 @default.
- W2989735360 creator A5016365052 @default.
- W2989735360 creator A5034144324 @default.
- W2989735360 creator A5040363557 @default.
- W2989735360 creator A5050210395 @default.
- W2989735360 creator A5060183961 @default.
- W2989735360 date "2019-11-30" @default.
- W2989735360 modified "2023-09-26" @default.
- W2989735360 title "The Optimization of Cemented Hydraulic Backfill Mixture Design Parameters for Different Strength Conditions Using Artificial Intelligence Algorithms" @default.
- W2989735360 cites W1594747067 @default.
- W2989735360 cites W1758138418 @default.
- W2989735360 cites W2573137292 @default.
- W2989735360 cites W2808569422 @default.
- W2989735360 cites W2891501056 @default.
- W2989735360 cites W2910556901 @default.
- W2989735360 doi "https://doi.org/10.1007/978-3-030-33954-8_28" @default.
- W2989735360 hasPublicationYear "2019" @default.
- W2989735360 type Work @default.
- W2989735360 sameAs 2989735360 @default.
- W2989735360 citedByCount "5" @default.
- W2989735360 countsByYear W29897353602020 @default.
- W2989735360 countsByYear W29897353602021 @default.
- W2989735360 countsByYear W29897353602022 @default.
- W2989735360 countsByYear W29897353602023 @default.
- W2989735360 crossrefType "book-chapter" @default.
- W2989735360 hasAuthorship W2989735360A5011087058 @default.
- W2989735360 hasAuthorship W2989735360A5016365052 @default.
- W2989735360 hasAuthorship W2989735360A5034144324 @default.
- W2989735360 hasAuthorship W2989735360A5040363557 @default.
- W2989735360 hasAuthorship W2989735360A5050210395 @default.
- W2989735360 hasAuthorship W2989735360A5060183961 @default.
- W2989735360 hasConcept C11413529 @default.
- W2989735360 hasConcept C126255220 @default.
- W2989735360 hasConcept C127413603 @default.
- W2989735360 hasConcept C187320778 @default.
- W2989735360 hasConcept C2987595161 @default.
- W2989735360 hasConcept C33923547 @default.
- W2989735360 hasConcept C41008148 @default.
- W2989735360 hasConceptScore W2989735360C11413529 @default.
- W2989735360 hasConceptScore W2989735360C126255220 @default.
- W2989735360 hasConceptScore W2989735360C127413603 @default.
- W2989735360 hasConceptScore W2989735360C187320778 @default.
- W2989735360 hasConceptScore W2989735360C2987595161 @default.
- W2989735360 hasConceptScore W2989735360C33923547 @default.
- W2989735360 hasConceptScore W2989735360C41008148 @default.
- W2989735360 hasLocation W29897353601 @default.
- W2989735360 hasOpenAccess W2989735360 @default.
- W2989735360 hasPrimaryLocation W29897353601 @default.
- W2989735360 hasRelatedWork W2325243670 @default.
- W2989735360 hasRelatedWork W2333698505 @default.
- W2989735360 hasRelatedWork W2351491280 @default.
- W2989735360 hasRelatedWork W2371447506 @default.
- W2989735360 hasRelatedWork W2386767533 @default.
- W2989735360 hasRelatedWork W2784342274 @default.
- W2989735360 hasRelatedWork W2965078190 @default.
- W2989735360 hasRelatedWork W303980170 @default.
- W2989735360 hasRelatedWork W4287863136 @default.
- W2989735360 hasRelatedWork W4312796479 @default.
- W2989735360 isParatext "false" @default.
- W2989735360 isRetracted "false" @default.
- W2989735360 magId "2989735360" @default.
- W2989735360 workType "book-chapter" @default.