Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989742608> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2989742608 endingPage "540" @default.
- W2989742608 startingPage "529" @default.
- W2989742608 abstract "Low-rank hyperspectral image recovery (LRHSIR) is a very challenging task in various computer vision applications for its inherent complexity. Hyperspectral image (HSI) contains much more information than a regular image due to significant number of spectra bands and the spectral information can be considered as multiview. In this paper, a method of bilinear factorization via recursive sample factoring (BF-RSF) is proposed. Different from traditional low rank models with each data point being treated equally, the importance of each data point is measured by the sample factoring that imposes a penalty on each sample in our BF-RSF model. The sample factoring is a cosine similarity metric learnt from the angle between each data point and the principal component of the low-rank matrix in the feature space. That is, the closer a data point to the principal component vector, the more likely it is a clean data point. By imposing the sample factoring onto the training dataset, the outliers or noise will be detected and their effect will be suppressed. Therefore, a better low-rank structure of clean data can be obtained especially in a heavy noisy scenario, with the effect of noisy data points in modeling being suppressed. Extensive experimental results on SalinasA, demonstrate that BF-RSF outperforms state-of-the-art low-rank matrix recovery methods in image clustering tasks with various levels of corruptions." @default.
- W2989742608 created "2019-12-05" @default.
- W2989742608 creator A5003375028 @default.
- W2989742608 creator A5015596649 @default.
- W2989742608 creator A5035742417 @default.
- W2989742608 creator A5047741511 @default.
- W2989742608 creator A5090125504 @default.
- W2989742608 date "2019-01-01" @default.
- W2989742608 modified "2023-09-27" @default.
- W2989742608 title "Bilinear Factorization via Recursive Sample Factoring for Low-Rank Hyperspectral Image Recovery" @default.
- W2989742608 cites W1993962865 @default.
- W2989742608 cites W1997201895 @default.
- W2989742608 cites W2021770241 @default.
- W2989742608 cites W2027922120 @default.
- W2989742608 cites W2060204507 @default.
- W2989742608 cites W2103305137 @default.
- W2989742608 cites W2110531331 @default.
- W2989742608 cites W2118550318 @default.
- W2989742608 cites W2138505091 @default.
- W2989742608 cites W2138507544 @default.
- W2989742608 cites W2145962650 @default.
- W2989742608 cites W2150958043 @default.
- W2989742608 cites W2152983072 @default.
- W2989742608 cites W2158379970 @default.
- W2989742608 cites W2162171343 @default.
- W2989742608 cites W2240167975 @default.
- W2989742608 cites W2572018699 @default.
- W2989742608 cites W2740544410 @default.
- W2989742608 cites W2901747865 @default.
- W2989742608 doi "https://doi.org/10.1007/978-3-030-34113-8_44" @default.
- W2989742608 hasPublicationYear "2019" @default.
- W2989742608 type Work @default.
- W2989742608 sameAs 2989742608 @default.
- W2989742608 citedByCount "0" @default.
- W2989742608 crossrefType "book-chapter" @default.
- W2989742608 hasAuthorship W2989742608A5003375028 @default.
- W2989742608 hasAuthorship W2989742608A5015596649 @default.
- W2989742608 hasAuthorship W2989742608A5035742417 @default.
- W2989742608 hasAuthorship W2989742608A5047741511 @default.
- W2989742608 hasAuthorship W2989742608A5090125504 @default.
- W2989742608 hasConcept C11413529 @default.
- W2989742608 hasConcept C114614502 @default.
- W2989742608 hasConcept C121332964 @default.
- W2989742608 hasConcept C153180895 @default.
- W2989742608 hasConcept C154945302 @default.
- W2989742608 hasConcept C158693339 @default.
- W2989742608 hasConcept C159078339 @default.
- W2989742608 hasConcept C164226766 @default.
- W2989742608 hasConcept C27438332 @default.
- W2989742608 hasConcept C33923547 @default.
- W2989742608 hasConcept C41008148 @default.
- W2989742608 hasConcept C42355184 @default.
- W2989742608 hasConcept C62520636 @default.
- W2989742608 hasConcept C79337645 @default.
- W2989742608 hasConceptScore W2989742608C11413529 @default.
- W2989742608 hasConceptScore W2989742608C114614502 @default.
- W2989742608 hasConceptScore W2989742608C121332964 @default.
- W2989742608 hasConceptScore W2989742608C153180895 @default.
- W2989742608 hasConceptScore W2989742608C154945302 @default.
- W2989742608 hasConceptScore W2989742608C158693339 @default.
- W2989742608 hasConceptScore W2989742608C159078339 @default.
- W2989742608 hasConceptScore W2989742608C164226766 @default.
- W2989742608 hasConceptScore W2989742608C27438332 @default.
- W2989742608 hasConceptScore W2989742608C33923547 @default.
- W2989742608 hasConceptScore W2989742608C41008148 @default.
- W2989742608 hasConceptScore W2989742608C42355184 @default.
- W2989742608 hasConceptScore W2989742608C62520636 @default.
- W2989742608 hasConceptScore W2989742608C79337645 @default.
- W2989742608 hasLocation W29897426081 @default.
- W2989742608 hasOpenAccess W2989742608 @default.
- W2989742608 hasPrimaryLocation W29897426081 @default.
- W2989742608 hasRelatedWork W1585144779 @default.
- W2989742608 hasRelatedWork W2114449385 @default.
- W2989742608 hasRelatedWork W2142308737 @default.
- W2989742608 hasRelatedWork W2380927352 @default.
- W2989742608 hasRelatedWork W2602031553 @default.
- W2989742608 hasRelatedWork W2766300339 @default.
- W2989742608 hasRelatedWork W3081910372 @default.
- W2989742608 hasRelatedWork W3097030804 @default.
- W2989742608 hasRelatedWork W3154145980 @default.
- W2989742608 hasRelatedWork W3178621026 @default.
- W2989742608 isParatext "false" @default.
- W2989742608 isRetracted "false" @default.
- W2989742608 magId "2989742608" @default.
- W2989742608 workType "book-chapter" @default.