Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989747620> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2989747620 endingPage "188" @default.
- W2989747620 startingPage "177" @default.
- W2989747620 abstract "With the current upsurge in the usage of social media platforms, the trend of using short text (microtext) in place of text with standard words has seen a significant rise. The usage of microtext poses a considerable performance issue to sentiment analysis, since models are trained on standard words. This paper discusses the impact of coupling sub-symbolic (phonetics) with symbolic (machine learning) Artificial Intelligence to transform the out-of-vocabulary (OOV) concepts into their standard in-vocabulary (IV) form. We develop binary classifier to detect OOV sentences and then they are transformed to phoneme subspace using grapheme to phoneme converter. We compare the phonetic and string distance using the Sorensen similarity algorithm. The phonetically similar IV concepts thus obtained are then used to compute the correct polarity value, which was previously being miscalculated because of the presence of microtext. Our proposed framework improves the accuracy of polarity detection by 6% as compared to the earlier model. In conclusion, we apply a grapheme to phoneme converter for microtext normalization and show its application on sentiment analysis." @default.
- W2989747620 created "2019-12-05" @default.
- W2989747620 creator A5054901394 @default.
- W2989747620 creator A5074542391 @default.
- W2989747620 creator A5074934997 @default.
- W2989747620 date "2019-01-01" @default.
- W2989747620 modified "2023-09-23" @default.
- W2989747620 title "PhonSenticNet: A Cognitive Approach to Microtext Normalization for Concept-Level Sentiment Analysis" @default.
- W2989747620 cites W1593247906 @default.
- W2989747620 cites W1868188096 @default.
- W2989747620 cites W189099732 @default.
- W2989747620 cites W2018616927 @default.
- W2989747620 cites W2019109450 @default.
- W2989747620 cites W2053966956 @default.
- W2989747620 cites W2055828199 @default.
- W2989747620 cites W2057900969 @default.
- W2989747620 cites W2090755665 @default.
- W2989747620 cites W2101200183 @default.
- W2989747620 cites W2108300325 @default.
- W2989747620 cites W2123594704 @default.
- W2989747620 cites W2129271949 @default.
- W2989747620 cites W2133503566 @default.
- W2989747620 cites W2144226312 @default.
- W2989747620 cites W2144378002 @default.
- W2989747620 cites W2163942301 @default.
- W2989747620 cites W2164107060 @default.
- W2989747620 cites W2188556664 @default.
- W2989747620 cites W2201929092 @default.
- W2989747620 cites W2774974668 @default.
- W2989747620 cites W2786411768 @default.
- W2989747620 cites W2788967885 @default.
- W2989747620 cites W2914408384 @default.
- W2989747620 cites W94800547 @default.
- W2989747620 doi "https://doi.org/10.1007/978-3-030-34980-6_20" @default.
- W2989747620 hasPublicationYear "2019" @default.
- W2989747620 type Work @default.
- W2989747620 sameAs 2989747620 @default.
- W2989747620 citedByCount "12" @default.
- W2989747620 countsByYear W29897476202020 @default.
- W2989747620 countsByYear W29897476202021 @default.
- W2989747620 countsByYear W29897476202022 @default.
- W2989747620 countsByYear W29897476202023 @default.
- W2989747620 crossrefType "book-chapter" @default.
- W2989747620 hasAuthorship W2989747620A5054901394 @default.
- W2989747620 hasAuthorship W2989747620A5074542391 @default.
- W2989747620 hasAuthorship W2989747620A5074934997 @default.
- W2989747620 hasBestOaLocation W29897476202 @default.
- W2989747620 hasConcept C136886441 @default.
- W2989747620 hasConcept C144024400 @default.
- W2989747620 hasConcept C15744967 @default.
- W2989747620 hasConcept C169760540 @default.
- W2989747620 hasConcept C169900460 @default.
- W2989747620 hasConcept C180747234 @default.
- W2989747620 hasConcept C36289849 @default.
- W2989747620 hasConcept C41008148 @default.
- W2989747620 hasConceptScore W2989747620C136886441 @default.
- W2989747620 hasConceptScore W2989747620C144024400 @default.
- W2989747620 hasConceptScore W2989747620C15744967 @default.
- W2989747620 hasConceptScore W2989747620C169760540 @default.
- W2989747620 hasConceptScore W2989747620C169900460 @default.
- W2989747620 hasConceptScore W2989747620C180747234 @default.
- W2989747620 hasConceptScore W2989747620C36289849 @default.
- W2989747620 hasConceptScore W2989747620C41008148 @default.
- W2989747620 hasLocation W29897476201 @default.
- W2989747620 hasLocation W29897476202 @default.
- W2989747620 hasOpenAccess W2989747620 @default.
- W2989747620 hasPrimaryLocation W29897476201 @default.
- W2989747620 hasRelatedWork W1995813262 @default.
- W2989747620 hasRelatedWork W2051831694 @default.
- W2989747620 hasRelatedWork W2075127398 @default.
- W2989747620 hasRelatedWork W2079468847 @default.
- W2989747620 hasRelatedWork W2101729768 @default.
- W2989747620 hasRelatedWork W2748952813 @default.
- W2989747620 hasRelatedWork W2899084033 @default.
- W2989747620 hasRelatedWork W3004108596 @default.
- W2989747620 hasRelatedWork W348899774 @default.
- W2989747620 hasRelatedWork W4234329498 @default.
- W2989747620 isParatext "false" @default.
- W2989747620 isRetracted "false" @default.
- W2989747620 magId "2989747620" @default.
- W2989747620 workType "book-chapter" @default.