Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989763605> ?p ?o ?g. }
- W2989763605 endingPage "134579" @default.
- W2989763605 startingPage "134579" @default.
- W2989763605 abstract "Urban heat magnitude and effects may represent harbingers of future climate change and the urban-rural gradients provide a unique natural laboratory for identifying both problems and solutions to climate change mitigation and adaptation. Here, we explored the trends and driving forces of land surface temperature (LST) along the urban-rural gradients of 26 cities in the largest urban agglomeration of China, the Yangtze River Delta Urban Agglomeration, using MODIS LST data combined with urban intensity, background climate, vegetation greenness, landscape structure, albedo, population and gross domestic product (GDP). We found that LST generally increased with increasing urban intensity along the urban-rural gradients while with large diurnal and seasonal variability. Large variability also existed between the maximum and minimum LST within the same urban intensity (e.g., 6.4 °C), suggesting cities themselves provide ready-made solutions (minimum) to resolving heat island problems. However, the range of LST within the same intensity decreased with the urban intensity and narrowed drastically when the intensity reached certain thresholds (e.g., 58-87% varying with season, time of day, and city), implying that the space for climate mitigation is very limited once the urbanization intensity exceeds critical thresholds. The roles of landscape structure (composition and configuration) for greenspace and urban land have become increasingly important in driving the variation of LST with increasing urban intensity from low (20%-30%), middle (45%-55%) to high (70%-80%), clearly indicating that subtle urban landscape designing, such as less aggregated urban configuration and more irregular greenspace shape are effective strategies to mitigate climate change in highly urbanized areas and cities themselves already provide such vivid demonstrations for us to find and learn." @default.
- W2989763605 created "2019-12-05" @default.
- W2989763605 creator A5072705996 @default.
- W2989763605 creator A5087697078 @default.
- W2989763605 date "2020-04-01" @default.
- W2989763605 modified "2023-10-17" @default.
- W2989763605 title "Trends and drivers of land surface temperature along the urban-rural gradients in the largest urban agglomeration of China" @default.
- W2989763605 cites W1665752722 @default.
- W2989763605 cites W1795468129 @default.
- W2989763605 cites W1951070732 @default.
- W2989763605 cites W1963894054 @default.
- W2989763605 cites W1964805252 @default.
- W2989763605 cites W1968163062 @default.
- W2989763605 cites W1981939599 @default.
- W2989763605 cites W1983322114 @default.
- W2989763605 cites W2036385699 @default.
- W2989763605 cites W2036610344 @default.
- W2989763605 cites W2057314580 @default.
- W2989763605 cites W2076358440 @default.
- W2989763605 cites W2082291024 @default.
- W2989763605 cites W2097467169 @default.
- W2989763605 cites W2114572626 @default.
- W2989763605 cites W2115746287 @default.
- W2989763605 cites W2119746410 @default.
- W2989763605 cites W2123531138 @default.
- W2989763605 cites W2126193047 @default.
- W2989763605 cites W2139531445 @default.
- W2989763605 cites W2153579464 @default.
- W2989763605 cites W2161122967 @default.
- W2989763605 cites W2162063693 @default.
- W2989763605 cites W2196222972 @default.
- W2989763605 cites W2342771067 @default.
- W2989763605 cites W2417285541 @default.
- W2989763605 cites W2471641792 @default.
- W2989763605 cites W2512410850 @default.
- W2989763605 cites W2554470513 @default.
- W2989763605 cites W2590857198 @default.
- W2989763605 cites W2725853395 @default.
- W2989763605 cites W2734618319 @default.
- W2989763605 cites W2741665529 @default.
- W2989763605 cites W2772529881 @default.
- W2989763605 cites W2790818269 @default.
- W2989763605 cites W2792627470 @default.
- W2989763605 cites W2793009097 @default.
- W2989763605 cites W2803959140 @default.
- W2989763605 cites W2898867855 @default.
- W2989763605 cites W2911945344 @default.
- W2989763605 cites W4213327538 @default.
- W2989763605 doi "https://doi.org/10.1016/j.scitotenv.2019.134579" @default.
- W2989763605 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31812398" @default.
- W2989763605 hasPublicationYear "2020" @default.
- W2989763605 type Work @default.
- W2989763605 sameAs 2989763605 @default.
- W2989763605 citedByCount "36" @default.
- W2989763605 countsByYear W29897636052020 @default.
- W2989763605 countsByYear W29897636052021 @default.
- W2989763605 countsByYear W29897636052022 @default.
- W2989763605 countsByYear W29897636052023 @default.
- W2989763605 crossrefType "journal-article" @default.
- W2989763605 hasAuthorship W2989763605A5072705996 @default.
- W2989763605 hasAuthorship W2989763605A5087697078 @default.
- W2989763605 hasConcept C100970517 @default.
- W2989763605 hasConcept C121332964 @default.
- W2989763605 hasConcept C131850264 @default.
- W2989763605 hasConcept C144024400 @default.
- W2989763605 hasConcept C149923435 @default.
- W2989763605 hasConcept C153294291 @default.
- W2989763605 hasConcept C154611951 @default.
- W2989763605 hasConcept C158049464 @default.
- W2989763605 hasConcept C159985019 @default.
- W2989763605 hasConcept C162324750 @default.
- W2989763605 hasConcept C166957645 @default.
- W2989763605 hasConcept C18903297 @default.
- W2989763605 hasConcept C191935318 @default.
- W2989763605 hasConcept C192562407 @default.
- W2989763605 hasConcept C204323151 @default.
- W2989763605 hasConcept C205649164 @default.
- W2989763605 hasConcept C26271046 @default.
- W2989763605 hasConcept C2908647359 @default.
- W2989763605 hasConcept C39432304 @default.
- W2989763605 hasConcept C39853841 @default.
- W2989763605 hasConcept C49545453 @default.
- W2989763605 hasConcept C50522688 @default.
- W2989763605 hasConcept C54005896 @default.
- W2989763605 hasConcept C62520636 @default.
- W2989763605 hasConcept C86803240 @default.
- W2989763605 hasConcept C93038891 @default.
- W2989763605 hasConceptScore W2989763605C100970517 @default.
- W2989763605 hasConceptScore W2989763605C121332964 @default.
- W2989763605 hasConceptScore W2989763605C131850264 @default.
- W2989763605 hasConceptScore W2989763605C144024400 @default.
- W2989763605 hasConceptScore W2989763605C149923435 @default.
- W2989763605 hasConceptScore W2989763605C153294291 @default.
- W2989763605 hasConceptScore W2989763605C154611951 @default.
- W2989763605 hasConceptScore W2989763605C158049464 @default.
- W2989763605 hasConceptScore W2989763605C159985019 @default.
- W2989763605 hasConceptScore W2989763605C162324750 @default.
- W2989763605 hasConceptScore W2989763605C166957645 @default.