Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989804787> ?p ?o ?g. }
Showing items 1 to 40 of
40
with 100 items per page.
- W2989804787 endingPage "128" @default.
- W2989804787 startingPage "119" @default.
- W2989804787 abstract "Introduction. In [1], [2] and [7] the classification of rank 2 H-spaces was practically completed. The fact that there are only finitely many (homotopy classes of) such spaces is due primarily to the fact that the number of possible mod-2 cohomoloty rings of such spaces is very limited as the Steenrod algebra (as well as higher order operations) act on such rings in a very definite way. In [4] it was shown that modulo odd primes non classical mod-p H-spaces of rank 2 exist: i. e. there exists an H-space X such that H*(X, Z P ) is an exterior algebra on two generators. (Modulo odd primes we consider odd dimensional spheres as classical H-spaces.) Consequently, the mod odd classification of mod odd rank 2 H-spaces is yet to be considered. Its implication for the classification problem of finite CW complexes is obvious, as the corollary to Theorem A illustrates. Throughout this paper let n and m be fixed odd integers such that 3 ≤ n ≤ m. As S n × S m is a mod odd H-space there are mod odd H-spaces of type (n, m) for any given such pair, and the classification has to be carried out separately for each such pair." @default.
- W2989804787 created "2019-12-05" @default.
- W2989804787 creator A5041472327 @default.
- W2989804787 date "1974-02-28" @default.
- W2989804787 modified "2023-10-14" @default.
- W2989804787 title "On rank 2 mod odd H-spaces" @default.
- W2989804787 doi "https://doi.org/10.1017/cbo9780511662607.012" @default.
- W2989804787 hasPublicationYear "1974" @default.
- W2989804787 type Work @default.
- W2989804787 sameAs 2989804787 @default.
- W2989804787 citedByCount "1" @default.
- W2989804787 crossrefType "book-chapter" @default.
- W2989804787 hasAuthorship W2989804787A5041472327 @default.
- W2989804787 hasConcept C114614502 @default.
- W2989804787 hasConcept C164226766 @default.
- W2989804787 hasConcept C29231244 @default.
- W2989804787 hasConcept C33923547 @default.
- W2989804787 hasConceptScore W2989804787C114614502 @default.
- W2989804787 hasConceptScore W2989804787C164226766 @default.
- W2989804787 hasConceptScore W2989804787C29231244 @default.
- W2989804787 hasConceptScore W2989804787C33923547 @default.
- W2989804787 hasLocation W29898047871 @default.
- W2989804787 hasOpenAccess W2989804787 @default.
- W2989804787 hasPrimaryLocation W29898047871 @default.
- W2989804787 hasRelatedWork W1978042415 @default.
- W2989804787 hasRelatedWork W1998266555 @default.
- W2989804787 hasRelatedWork W2009725566 @default.
- W2989804787 hasRelatedWork W2015344078 @default.
- W2989804787 hasRelatedWork W2114213425 @default.
- W2989804787 hasRelatedWork W2138239764 @default.
- W2989804787 hasRelatedWork W2791901507 @default.
- W2989804787 hasRelatedWork W2792682067 @default.
- W2989804787 hasRelatedWork W2809521598 @default.
- W2989804787 hasRelatedWork W4233721905 @default.
- W2989804787 isParatext "false" @default.
- W2989804787 isRetracted "false" @default.
- W2989804787 magId "2989804787" @default.
- W2989804787 workType "book-chapter" @default.