Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989867815> ?p ?o ?g. }
- W2989867815 endingPage "175019" @default.
- W2989867815 startingPage "175003" @default.
- W2989867815 abstract "Cloud computing is a novel paradigm, where the limitations of ubiquitous connected devices in terms of computing, data access, networking and storage are solved through the use of cloud infrastructure. The pervasive adoption of cloud computing results in a rising carbon footprint due to the high energy consumption of computing servers. This negatively affects the environment and entails an associated increase in electricity costs and consequently operational costs. Many works proposed scheduling algorithms using software-centric power models in order to predict electric power consumption in underlying data centers and to schedule cloud tasks so as to reduce energy consumption. Linear models which are based on the lowest-and highest-power data points (referred to here as the “Power Endpoints Model” - PEM) and the simple linear regression (SLR) model are the most used in the literature. However, these models have traditionally been evaluated using different environments, experimental setups, workloads, and error calculation formulas. In this paper, a unified classification and evaluation for these linear power models is presented, under unified setup, benchmarking applications, and error formula with the main goal being to achieve an objective comparison. A new power model is proposed, named Locally Corrected Multiple Linear Regression (LC-MLR), in order to increase prediction accuracy. A simulation framework for a cloud energy-aware scheduler is introduced. The framework combines the Energy-Aware Task Scheduling on Cloud Virtual Machines (EATSVM) with the LC-MLR power model, and facilitates performance measurement for cloud data centers. The scheduler with the new power model increases energy efficiency without degrading the qualities of service of the system. The workloads used for performance evaluation and comparisons in this work are generated using a diverse set of applications. The results show that LC-MLR outperforms the most-used models for simulation of power consumption of cloud data centers. The detailed performance analysis is elaborated in the paper." @default.
- W2989867815 created "2019-12-05" @default.
- W2989867815 creator A5000395681 @default.
- W2989867815 creator A5087867089 @default.
- W2989867815 date "2019-01-01" @default.
- W2989867815 modified "2023-10-10" @default.
- W2989867815 title "Linear Power Modeling for Cloud Data Centers: Taxonomy, Locally Corrected Linear Regression, Simulation Framework and Evaluation" @default.
- W2989867815 cites W1975216592 @default.
- W2989867815 cites W1977473318 @default.
- W2989867815 cites W1978969737 @default.
- W2989867815 cites W1984401578 @default.
- W2989867815 cites W1984807636 @default.
- W2989867815 cites W1986800449 @default.
- W2989867815 cites W1990854934 @default.
- W2989867815 cites W1998234836 @default.
- W2989867815 cites W2001555014 @default.
- W2989867815 cites W2002196748 @default.
- W2989867815 cites W2016333825 @default.
- W2989867815 cites W2016985849 @default.
- W2989867815 cites W2019675177 @default.
- W2989867815 cites W2033464677 @default.
- W2989867815 cites W2033770008 @default.
- W2989867815 cites W2039345646 @default.
- W2989867815 cites W2045287414 @default.
- W2989867815 cites W2047076897 @default.
- W2989867815 cites W2047533412 @default.
- W2989867815 cites W2049867014 @default.
- W2989867815 cites W2060746038 @default.
- W2989867815 cites W2061758778 @default.
- W2989867815 cites W2062059020 @default.
- W2989867815 cites W2062775008 @default.
- W2989867815 cites W2069611118 @default.
- W2989867815 cites W2074070386 @default.
- W2989867815 cites W2086078985 @default.
- W2989867815 cites W2095829438 @default.
- W2989867815 cites W2104105007 @default.
- W2989867815 cites W2109546606 @default.
- W2989867815 cites W2110374615 @default.
- W2989867815 cites W2115219441 @default.
- W2989867815 cites W2133804388 @default.
- W2989867815 cites W2148459868 @default.
- W2989867815 cites W2149472591 @default.
- W2989867815 cites W2150654762 @default.
- W2989867815 cites W2150940779 @default.
- W2989867815 cites W2160680340 @default.
- W2989867815 cites W2161359269 @default.
- W2989867815 cites W2170602308 @default.
- W2989867815 cites W2253601941 @default.
- W2989867815 cites W2276782226 @default.
- W2989867815 cites W2284351912 @default.
- W2989867815 cites W2344197414 @default.
- W2989867815 cites W2498207281 @default.
- W2989867815 cites W2509079811 @default.
- W2989867815 cites W2539340552 @default.
- W2989867815 cites W2600136667 @default.
- W2989867815 cites W2741849280 @default.
- W2989867815 cites W2797304370 @default.
- W2989867815 cites W2798306665 @default.
- W2989867815 cites W2889153570 @default.
- W2989867815 cites W2891065585 @default.
- W2989867815 cites W2905434251 @default.
- W2989867815 cites W2934871681 @default.
- W2989867815 cites W2999424480 @default.
- W2989867815 cites W3021716134 @default.
- W2989867815 cites W4251091605 @default.
- W2989867815 cites W4376103568 @default.
- W2989867815 cites W2477705840 @default.
- W2989867815 doi "https://doi.org/10.1109/access.2019.2956881" @default.
- W2989867815 hasPublicationYear "2019" @default.
- W2989867815 type Work @default.
- W2989867815 sameAs 2989867815 @default.
- W2989867815 citedByCount "15" @default.
- W2989867815 countsByYear W29898678152020 @default.
- W2989867815 countsByYear W29898678152021 @default.
- W2989867815 countsByYear W29898678152022 @default.
- W2989867815 countsByYear W29898678152023 @default.
- W2989867815 crossrefType "journal-article" @default.
- W2989867815 hasAuthorship W2989867815A5000395681 @default.
- W2989867815 hasAuthorship W2989867815A5087867089 @default.
- W2989867815 hasBestOaLocation W29898678151 @default.
- W2989867815 hasConcept C111919701 @default.
- W2989867815 hasConcept C119599485 @default.
- W2989867815 hasConcept C119857082 @default.
- W2989867815 hasConcept C120314980 @default.
- W2989867815 hasConcept C126255220 @default.
- W2989867815 hasConcept C127413603 @default.
- W2989867815 hasConcept C206729178 @default.
- W2989867815 hasConcept C2742236 @default.
- W2989867815 hasConcept C2780165032 @default.
- W2989867815 hasConcept C33923547 @default.
- W2989867815 hasConcept C41008148 @default.
- W2989867815 hasConcept C48921125 @default.
- W2989867815 hasConcept C67186912 @default.
- W2989867815 hasConcept C77088390 @default.
- W2989867815 hasConcept C79974875 @default.
- W2989867815 hasConceptScore W2989867815C111919701 @default.
- W2989867815 hasConceptScore W2989867815C119599485 @default.
- W2989867815 hasConceptScore W2989867815C119857082 @default.