Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989883977> ?p ?o ?g. }
- W2989883977 endingPage "112169" @default.
- W2989883977 startingPage "112169" @default.
- W2989883977 abstract "In this paper, Broadband Dielectric Spectroscopy (BDS) has been applied to study the molecular dynamics of the two active pharmaceutical ingredients (APIs), probucol (PRO) and droperidol (DRO), above and below the glass transition temperature, at varying thermodynamic conditions. We found that the structural ( α )-relaxation process in both compounds is sensitive to compression. It was reflected in the high pressure coefficients of the glass transition temperature, d T g /d p = 227 K/GPa and d T g /d p = 427 K/GPa for DRO and PRO, respectively. In this context, it is worthwhile to emphasize that d T g /d p calculated for the latter API is the highest reported to date for the low molecular weight glass formers. Furthermore, the data collected upon squeezing samples revealed that the pressure dependence of the relaxation times of the Johari Goldstein (JG) β -process in PRO is weaker with respect to that of structural relaxation. Thus, a breakdown of exact superposition of both modes has been noted. A slightly different scenario was observed in DRO, where relaxation times of the secondary non-JG γ -process, obtained at different T and p , plotted versus T g / T , collapsed forming a single curve. A breakdown of exact isochronal superpositioning of α - and JG β -relaxation times at varying thermodynamic conditions in PRO, that is weakly H-bonded low molecular weight glass former, is in accordance with the data reported for the strongly associating compounds (e.g., sorbitol). Moreover, recently a similar scenario has been observed for some polymers, i.e., 1,4-polybutadiene (PBD) (Ransom et al., 2018), poly(methyl methacrylate) (PMMA) (Casalini and Roland, 2013) and polyisoprene (PI) (Kołodziej et al., 2018). This phenomenon, which is consistent with the approximate invariance of the ratio of these two relaxation times to change of thermodynamics conditions (as predicted by the Coupling Model), was assigned to the increasing torsional rigidity of the macromolecule backbone or alternatively to the non-uniform responses to variations of temperature and pressure of the distributed modes composing the JG β -process, resulting in changes of the spectral shape and different f β ( p , T ) obtained from the fitting procedure. One can suppose that due to the variation in the population of weak H-bonds at elevated pressure in PRO, the latter effect might be enhanced, contributing to the observed experimental finding. Finally, the data reported herein emphasize the impact of molecular aspects related to specific interactions on the correlation between α - and JG β -relaxation at varying T and p conditions. • d T g /d p parameter estimated for probucol (PRO) is extremely high. • The pressure dependence of τ JG - β in PRO is weaker with respect to that of τ α . • There is a breakdown of exact isochronal α and JG β superpositioning in PRO. • Non-JG ( γ )-relaxation in droperidol is sensitive to compression." @default.
- W2989883977 created "2019-12-05" @default.
- W2989883977 creator A5031724981 @default.
- W2989883977 creator A5039791408 @default.
- W2989883977 creator A5049082104 @default.
- W2989883977 creator A5083882145 @default.
- W2989883977 creator A5083930336 @default.
- W2989883977 date "2020-02-01" @default.
- W2989883977 modified "2023-10-03" @default.
- W2989883977 title "Breakdown of the isochronal structural (α) and secondary (JG β) exact superpositioning in probucol - A low molecular weight pharmaceutical" @default.
- W2989883977 cites W1966932741 @default.
- W2989883977 cites W1970746487 @default.
- W2989883977 cites W1975139074 @default.
- W2989883977 cites W1979923346 @default.
- W2989883977 cites W1980163451 @default.
- W2989883977 cites W1988467502 @default.
- W2989883977 cites W1988590164 @default.
- W2989883977 cites W1990140100 @default.
- W2989883977 cites W1992144711 @default.
- W2989883977 cites W1995053104 @default.
- W2989883977 cites W2000596373 @default.
- W2989883977 cites W2017046268 @default.
- W2989883977 cites W2018749688 @default.
- W2989883977 cites W2021397887 @default.
- W2989883977 cites W2023317610 @default.
- W2989883977 cites W2027123594 @default.
- W2989883977 cites W2045137012 @default.
- W2989883977 cites W2045442437 @default.
- W2989883977 cites W2049626269 @default.
- W2989883977 cites W2050008150 @default.
- W2989883977 cites W2052833913 @default.
- W2989883977 cites W2054122095 @default.
- W2989883977 cites W2062821809 @default.
- W2989883977 cites W2065002882 @default.
- W2989883977 cites W2073200436 @default.
- W2989883977 cites W2083761935 @default.
- W2989883977 cites W2091742396 @default.
- W2989883977 cites W2091862631 @default.
- W2989883977 cites W2093705435 @default.
- W2989883977 cites W2096701705 @default.
- W2989883977 cites W2097080321 @default.
- W2989883977 cites W2109449770 @default.
- W2989883977 cites W2128492908 @default.
- W2989883977 cites W2153067618 @default.
- W2989883977 cites W2166116091 @default.
- W2989883977 cites W2293828906 @default.
- W2989883977 cites W2300670775 @default.
- W2989883977 cites W2313627868 @default.
- W2989883977 cites W2315379429 @default.
- W2989883977 cites W2339876821 @default.
- W2989883977 cites W2345715407 @default.
- W2989883977 cites W2400453882 @default.
- W2989883977 cites W2517629375 @default.
- W2989883977 cites W2538407156 @default.
- W2989883977 cites W2735204193 @default.
- W2989883977 cites W2743496219 @default.
- W2989883977 cites W2748064612 @default.
- W2989883977 cites W2805665496 @default.
- W2989883977 cites W2806570246 @default.
- W2989883977 cites W2806969798 @default.
- W2989883977 cites W2808169636 @default.
- W2989883977 cites W2808684424 @default.
- W2989883977 cites W2845006911 @default.
- W2989883977 cites W2899222029 @default.
- W2989883977 cites W2899929659 @default.
- W2989883977 cites W2911963225 @default.
- W2989883977 cites W2944149593 @default.
- W2989883977 cites W2945574802 @default.
- W2989883977 doi "https://doi.org/10.1016/j.molliq.2019.112169" @default.
- W2989883977 hasPublicationYear "2020" @default.
- W2989883977 type Work @default.
- W2989883977 sameAs 2989883977 @default.
- W2989883977 citedByCount "14" @default.
- W2989883977 countsByYear W29898839772020 @default.
- W2989883977 countsByYear W29898839772021 @default.
- W2989883977 countsByYear W29898839772022 @default.
- W2989883977 countsByYear W29898839772023 @default.
- W2989883977 crossrefType "journal-article" @default.
- W2989883977 hasAuthorship W2989883977A5031724981 @default.
- W2989883977 hasAuthorship W2989883977A5039791408 @default.
- W2989883977 hasAuthorship W2989883977A5049082104 @default.
- W2989883977 hasAuthorship W2989883977A5083882145 @default.
- W2989883977 hasAuthorship W2989883977A5083930336 @default.
- W2989883977 hasConcept C113196181 @default.
- W2989883977 hasConcept C121332964 @default.
- W2989883977 hasConcept C122865956 @default.
- W2989883977 hasConcept C151730666 @default.
- W2989883977 hasConcept C15744967 @default.
- W2989883977 hasConcept C15920480 @default.
- W2989883977 hasConcept C178790620 @default.
- W2989883977 hasConcept C185592680 @default.
- W2989883977 hasConcept C192562407 @default.
- W2989883977 hasConcept C2776029896 @default.
- W2989883977 hasConcept C2779343474 @default.
- W2989883977 hasConcept C2780901341 @default.
- W2989883977 hasConcept C521977710 @default.
- W2989883977 hasConcept C77805123 @default.
- W2989883977 hasConcept C86803240 @default.