Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989897789> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2989897789 endingPage "375" @default.
- W2989897789 startingPage "375" @default.
- W2989897789 abstract "As an important part of emotion research, facial expression recognition is a necessary requirement in human–machine interface. Generally, a face expression recognition system includes face detection, feature extraction, and feature classification. Although great success has been made by the traditional machine learning methods, most of them have complex computational problems and lack the ability to extract comprehensive and abstract features. Deep learning-based methods can realize a higher recognition rate for facial expressions, but a large number of training samples and tuning parameters are needed, and the hardware requirement is very high. For the above problems, this paper proposes a method combining features that extracted by the convolutional neural network (CNN) with the C4.5 classifier to recognize facial expressions, which not only can address the incompleteness of handcrafted features but also can avoid the high hardware configuration in the deep learning model. Considering some problems of overfitting and weak generalization ability of the single classifier, random forest is applied in this paper. Meanwhile, this paper makes some improvements for C4.5 classifier and the traditional random forest in the process of experiments. A large number of experiments have proved the effectiveness and feasibility of the proposed method." @default.
- W2989897789 created "2019-12-05" @default.
- W2989897789 creator A5025820722 @default.
- W2989897789 creator A5039030237 @default.
- W2989897789 creator A5050596277 @default.
- W2989897789 creator A5061179511 @default.
- W2989897789 date "2019-11-28" @default.
- W2989897789 modified "2023-10-12" @default.
- W2989897789 title "Facial Expression Recognition Based on Random Forest and Convolutional Neural Network" @default.
- W2989897789 cites W1494046077 @default.
- W2989897789 cites W1968015059 @default.
- W2989897789 cites W2003238582 @default.
- W2989897789 cites W2070574643 @default.
- W2989897789 cites W2079589085 @default.
- W2989897789 cites W2134249892 @default.
- W2989897789 cites W2144354855 @default.
- W2989897789 cites W2145310492 @default.
- W2989897789 cites W2266242722 @default.
- W2989897789 cites W2280370717 @default.
- W2989897789 cites W2506506742 @default.
- W2989897789 cites W2614041639 @default.
- W2989897789 cites W2889978276 @default.
- W2989897789 cites W2904483377 @default.
- W2989897789 cites W4236137412 @default.
- W2989897789 cites W4243451502 @default.
- W2989897789 doi "https://doi.org/10.3390/info10120375" @default.
- W2989897789 hasPublicationYear "2019" @default.
- W2989897789 type Work @default.
- W2989897789 sameAs 2989897789 @default.
- W2989897789 citedByCount "23" @default.
- W2989897789 countsByYear W29898977892020 @default.
- W2989897789 countsByYear W29898977892021 @default.
- W2989897789 countsByYear W29898977892022 @default.
- W2989897789 countsByYear W29898977892023 @default.
- W2989897789 crossrefType "journal-article" @default.
- W2989897789 hasAuthorship W2989897789A5025820722 @default.
- W2989897789 hasAuthorship W2989897789A5039030237 @default.
- W2989897789 hasAuthorship W2989897789A5050596277 @default.
- W2989897789 hasAuthorship W2989897789A5061179511 @default.
- W2989897789 hasBestOaLocation W29898977891 @default.
- W2989897789 hasConcept C108583219 @default.
- W2989897789 hasConcept C119857082 @default.
- W2989897789 hasConcept C153180895 @default.
- W2989897789 hasConcept C154945302 @default.
- W2989897789 hasConcept C169258074 @default.
- W2989897789 hasConcept C195704467 @default.
- W2989897789 hasConcept C22019652 @default.
- W2989897789 hasConcept C28490314 @default.
- W2989897789 hasConcept C31510193 @default.
- W2989897789 hasConcept C41008148 @default.
- W2989897789 hasConcept C50644808 @default.
- W2989897789 hasConcept C52622490 @default.
- W2989897789 hasConcept C81363708 @default.
- W2989897789 hasConcept C95623464 @default.
- W2989897789 hasConceptScore W2989897789C108583219 @default.
- W2989897789 hasConceptScore W2989897789C119857082 @default.
- W2989897789 hasConceptScore W2989897789C153180895 @default.
- W2989897789 hasConceptScore W2989897789C154945302 @default.
- W2989897789 hasConceptScore W2989897789C169258074 @default.
- W2989897789 hasConceptScore W2989897789C195704467 @default.
- W2989897789 hasConceptScore W2989897789C22019652 @default.
- W2989897789 hasConceptScore W2989897789C28490314 @default.
- W2989897789 hasConceptScore W2989897789C31510193 @default.
- W2989897789 hasConceptScore W2989897789C41008148 @default.
- W2989897789 hasConceptScore W2989897789C50644808 @default.
- W2989897789 hasConceptScore W2989897789C52622490 @default.
- W2989897789 hasConceptScore W2989897789C81363708 @default.
- W2989897789 hasConceptScore W2989897789C95623464 @default.
- W2989897789 hasIssue "12" @default.
- W2989897789 hasLocation W29898977891 @default.
- W2989897789 hasOpenAccess W2989897789 @default.
- W2989897789 hasPrimaryLocation W29898977891 @default.
- W2989897789 hasRelatedWork W2733060750 @default.
- W2989897789 hasRelatedWork W2767651786 @default.
- W2989897789 hasRelatedWork W2964383635 @default.
- W2989897789 hasRelatedWork W2977314777 @default.
- W2989897789 hasRelatedWork W2989897789 @default.
- W2989897789 hasRelatedWork W2995914718 @default.
- W2989897789 hasRelatedWork W3000095492 @default.
- W2989897789 hasRelatedWork W3156786002 @default.
- W2989897789 hasRelatedWork W4317987726 @default.
- W2989897789 hasRelatedWork W564581980 @default.
- W2989897789 hasVolume "10" @default.
- W2989897789 isParatext "false" @default.
- W2989897789 isRetracted "false" @default.
- W2989897789 magId "2989897789" @default.
- W2989897789 workType "article" @default.