Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989968587> ?p ?o ?g. }
- W2989968587 endingPage "1068" @default.
- W2989968587 startingPage "1057" @default.
- W2989968587 abstract "In machining process, tool wear is an inevitable consequence which progresses rapidly leading to a catastrophic failure of the system and accidents. Moreover, machinery failure has become more costly and has undesirable consequences on the availability and the productivity. Consequently, developing a robust approach for monitoring tool wear condition is needed to get accurate product dimensions with high quality surface and reduced stopping time of machines. Prognostics and health management has become one of the most challenging aspects for monitoring the wear condition of cutting tools. This study focuses on the evaluation of the current health condition of cutting tools and the prediction of its remaining useful life. Indeed, the proposed method consists of the integration of complex continuous wavelet transform (CCWT) and improved extreme learning machine (IELM). In the proposed IELM, the hidden layer output matrix is given by inverting the Moore–Penrose generalized inverse. After the decomposition of the acoustic emission signals using CCWT, the nodes energy of coefficients have been taken as relevant features which are then used as inputs in IELM. The principal idea is that a non-linear regression in a feature space of high dimension is involved by the extreme learning machine to map the input data via a non-linear function for generating the degradation model. Then, the health indicator is obtained through the exploitation of the derived model which is in turn used to estimate the remaining useful life. The method was carried out on data of the real world collected during various cuts of a computer numerical controlled tool." @default.
- W2989968587 created "2019-12-05" @default.
- W2989968587 creator A5001949378 @default.
- W2989968587 creator A5009998510 @default.
- W2989968587 creator A5020943142 @default.
- W2989968587 creator A5022184520 @default.
- W2989968587 date "2019-11-25" @default.
- W2989968587 modified "2023-10-17" @default.
- W2989968587 title "Tool wear condition monitoring based on wavelet transform and improved extreme learning machine" @default.
- W2989968587 cites W139061625 @default.
- W2989968587 cites W1977368497 @default.
- W2989968587 cites W2001647046 @default.
- W2989968587 cites W2013821261 @default.
- W2989968587 cites W2037250283 @default.
- W2989968587 cites W2051295601 @default.
- W2989968587 cites W2060333749 @default.
- W2989968587 cites W2069262928 @default.
- W2989968587 cites W2111072639 @default.
- W2989968587 cites W2124885947 @default.
- W2989968587 cites W2135479611 @default.
- W2989968587 cites W2167218164 @default.
- W2989968587 cites W2169125523 @default.
- W2989968587 cites W2340400001 @default.
- W2989968587 cites W2405191498 @default.
- W2989968587 cites W2414045041 @default.
- W2989968587 cites W2466930957 @default.
- W2989968587 cites W2508495335 @default.
- W2989968587 cites W2568310397 @default.
- W2989968587 cites W2588912331 @default.
- W2989968587 cites W2597481444 @default.
- W2989968587 cites W2752452759 @default.
- W2989968587 cites W2770206312 @default.
- W2989968587 cites W2773470152 @default.
- W2989968587 cites W2773549135 @default.
- W2989968587 cites W2803411422 @default.
- W2989968587 cites W4240428822 @default.
- W2989968587 cites W827153094 @default.
- W2989968587 cites W856269280 @default.
- W2989968587 doi "https://doi.org/10.1177/0954406219888544" @default.
- W2989968587 hasPublicationYear "2019" @default.
- W2989968587 type Work @default.
- W2989968587 sameAs 2989968587 @default.
- W2989968587 citedByCount "22" @default.
- W2989968587 countsByYear W29899685872020 @default.
- W2989968587 countsByYear W29899685872021 @default.
- W2989968587 countsByYear W29899685872022 @default.
- W2989968587 countsByYear W29899685872023 @default.
- W2989968587 crossrefType "journal-article" @default.
- W2989968587 hasAuthorship W2989968587A5001949378 @default.
- W2989968587 hasAuthorship W2989968587A5009998510 @default.
- W2989968587 hasAuthorship W2989968587A5020943142 @default.
- W2989968587 hasAuthorship W2989968587A5022184520 @default.
- W2989968587 hasConcept C104317684 @default.
- W2989968587 hasConcept C111919701 @default.
- W2989968587 hasConcept C119599485 @default.
- W2989968587 hasConcept C119857082 @default.
- W2989968587 hasConcept C124101348 @default.
- W2989968587 hasConcept C127413603 @default.
- W2989968587 hasConcept C129364497 @default.
- W2989968587 hasConcept C138885662 @default.
- W2989968587 hasConcept C154945302 @default.
- W2989968587 hasConcept C185592680 @default.
- W2989968587 hasConcept C204241405 @default.
- W2989968587 hasConcept C2775846686 @default.
- W2989968587 hasConcept C2776401178 @default.
- W2989968587 hasConcept C2776450708 @default.
- W2989968587 hasConcept C2780150128 @default.
- W2989968587 hasConcept C41008148 @default.
- W2989968587 hasConcept C41895202 @default.
- W2989968587 hasConcept C47432892 @default.
- W2989968587 hasConcept C50644808 @default.
- W2989968587 hasConcept C523214423 @default.
- W2989968587 hasConcept C55493867 @default.
- W2989968587 hasConcept C78519656 @default.
- W2989968587 hasConcept C98045186 @default.
- W2989968587 hasConceptScore W2989968587C104317684 @default.
- W2989968587 hasConceptScore W2989968587C111919701 @default.
- W2989968587 hasConceptScore W2989968587C119599485 @default.
- W2989968587 hasConceptScore W2989968587C119857082 @default.
- W2989968587 hasConceptScore W2989968587C124101348 @default.
- W2989968587 hasConceptScore W2989968587C127413603 @default.
- W2989968587 hasConceptScore W2989968587C129364497 @default.
- W2989968587 hasConceptScore W2989968587C138885662 @default.
- W2989968587 hasConceptScore W2989968587C154945302 @default.
- W2989968587 hasConceptScore W2989968587C185592680 @default.
- W2989968587 hasConceptScore W2989968587C204241405 @default.
- W2989968587 hasConceptScore W2989968587C2775846686 @default.
- W2989968587 hasConceptScore W2989968587C2776401178 @default.
- W2989968587 hasConceptScore W2989968587C2776450708 @default.
- W2989968587 hasConceptScore W2989968587C2780150128 @default.
- W2989968587 hasConceptScore W2989968587C41008148 @default.
- W2989968587 hasConceptScore W2989968587C41895202 @default.
- W2989968587 hasConceptScore W2989968587C47432892 @default.
- W2989968587 hasConceptScore W2989968587C50644808 @default.
- W2989968587 hasConceptScore W2989968587C523214423 @default.
- W2989968587 hasConceptScore W2989968587C55493867 @default.
- W2989968587 hasConceptScore W2989968587C78519656 @default.
- W2989968587 hasConceptScore W2989968587C98045186 @default.