Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990015051> ?p ?o ?g. }
- W2990015051 endingPage "120" @default.
- W2990015051 startingPage "91" @default.
- W2990015051 abstract "We propose a generalization of the celebrated Ring Learning with Errors (RLWE) problem (Lyubashevsky, Peikert and Regev, Eurocrypt 2010, Eurocrypt 2013), wherein the ambient ring is not the ring of integers of a number field, but rather an order (a full rank subring). We show that our Order-LWE problem enjoys worst-case hardness with respect to short-vector problems in invertible-ideal lattices of the order. The definition allows us to provide a new analysis for the hardness of the abundantly used Polynomial-LWE (PLWE) problem (Stehlé et al., Asiacrypt 2009), different from the one recently proposed by Rosca, Stehlé and Wallet (Eurocrypt 2018). This suggests that Order-LWE may be used to analyze and possibly design useful relaxations of RLWE. We show that Order-LWE can naturally be harnessed to prove security for RLWE instances where the “RLWE secret” (which often corresponds to the secret-key of a cryptosystem) is not sampled uniformly as required for RLWE hardness. We start by showing worst-case hardness even if the secret is sampled from a subring of the sample space. Then, we study the case where the secret is sampled from an ideal of the sample space or a coset thereof (equivalently, some of its CRT coordinates are fixed or leaked). In the latter, we show an interesting threshold phenomenon where the amount of RLWE noise determines whether the problem is tractable. Lastly, we address the long standing question of whether high-entropy secret is sufficient for RLWE to be intractable. Our result on sampling from ideals shows that simply requiring high entropy is insufficient. We therefore propose a broad class of distributions where we conjecture that hardness should hold, and provide evidence via reduction to a concrete lattice problem." @default.
- W2990015051 created "2019-12-05" @default.
- W2990015051 creator A5002542608 @default.
- W2990015051 creator A5023394357 @default.
- W2990015051 creator A5023852532 @default.
- W2990015051 creator A5028680151 @default.
- W2990015051 date "2019-01-01" @default.
- W2990015051 modified "2023-10-18" @default.
- W2990015051 title "Order-LWE and the Hardness of Ring-LWE with Entropic Secrets" @default.
- W2990015051 cites W1491861813 @default.
- W2990015051 cites W1494049356 @default.
- W2990015051 cites W1508077776 @default.
- W2990015051 cites W1546634390 @default.
- W2990015051 cites W1606729219 @default.
- W2990015051 cites W1675339804 @default.
- W2990015051 cites W1862721573 @default.
- W2990015051 cites W190530026 @default.
- W2990015051 cites W1992282993 @default.
- W2990015051 cites W2007466965 @default.
- W2990015051 cites W2058785578 @default.
- W2990015051 cites W2098290658 @default.
- W2990015051 cites W2111416661 @default.
- W2990015051 cites W2113333997 @default.
- W2990015051 cites W2113717903 @default.
- W2990015051 cites W2146633075 @default.
- W2990015051 cites W2147412664 @default.
- W2990015051 cites W2152926062 @default.
- W2990015051 cites W2156030242 @default.
- W2990015051 cites W2252429145 @default.
- W2990015051 cites W2291524553 @default.
- W2990015051 cites W2293130060 @default.
- W2990015051 cites W236632755 @default.
- W2990015051 cites W2401959250 @default.
- W2990015051 cites W2494379008 @default.
- W2990015051 cites W2514587965 @default.
- W2990015051 cites W2626019822 @default.
- W2990015051 cites W2795036470 @default.
- W2990015051 cites W2900370870 @default.
- W2990015051 cites W31130112 @default.
- W2990015051 cites W39036742 @default.
- W2990015051 cites W774911181 @default.
- W2990015051 doi "https://doi.org/10.1007/978-3-030-34621-8_4" @default.
- W2990015051 hasPublicationYear "2019" @default.
- W2990015051 type Work @default.
- W2990015051 sameAs 2990015051 @default.
- W2990015051 citedByCount "6" @default.
- W2990015051 countsByYear W29900150512019 @default.
- W2990015051 countsByYear W29900150512020 @default.
- W2990015051 countsByYear W29900150512021 @default.
- W2990015051 crossrefType "book-chapter" @default.
- W2990015051 hasAuthorship W2990015051A5002542608 @default.
- W2990015051 hasAuthorship W2990015051A5023394357 @default.
- W2990015051 hasAuthorship W2990015051A5023852532 @default.
- W2990015051 hasAuthorship W2990015051A5028680151 @default.
- W2990015051 hasConcept C10138342 @default.
- W2990015051 hasConcept C11413529 @default.
- W2990015051 hasConcept C118615104 @default.
- W2990015051 hasConcept C134306372 @default.
- W2990015051 hasConcept C162324750 @default.
- W2990015051 hasConcept C178489894 @default.
- W2990015051 hasConcept C178790620 @default.
- W2990015051 hasConcept C182306322 @default.
- W2990015051 hasConcept C185592680 @default.
- W2990015051 hasConcept C21714298 @default.
- W2990015051 hasConcept C2779014939 @default.
- W2990015051 hasConcept C2780378348 @default.
- W2990015051 hasConcept C33923547 @default.
- W2990015051 hasConcept C41008148 @default.
- W2990015051 hasConcept C6295992 @default.
- W2990015051 hasConcept C90119067 @default.
- W2990015051 hasConcept C9485509 @default.
- W2990015051 hasConceptScore W2990015051C10138342 @default.
- W2990015051 hasConceptScore W2990015051C11413529 @default.
- W2990015051 hasConceptScore W2990015051C118615104 @default.
- W2990015051 hasConceptScore W2990015051C134306372 @default.
- W2990015051 hasConceptScore W2990015051C162324750 @default.
- W2990015051 hasConceptScore W2990015051C178489894 @default.
- W2990015051 hasConceptScore W2990015051C178790620 @default.
- W2990015051 hasConceptScore W2990015051C182306322 @default.
- W2990015051 hasConceptScore W2990015051C185592680 @default.
- W2990015051 hasConceptScore W2990015051C21714298 @default.
- W2990015051 hasConceptScore W2990015051C2779014939 @default.
- W2990015051 hasConceptScore W2990015051C2780378348 @default.
- W2990015051 hasConceptScore W2990015051C33923547 @default.
- W2990015051 hasConceptScore W2990015051C41008148 @default.
- W2990015051 hasConceptScore W2990015051C6295992 @default.
- W2990015051 hasConceptScore W2990015051C90119067 @default.
- W2990015051 hasConceptScore W2990015051C9485509 @default.
- W2990015051 hasLocation W29900150511 @default.
- W2990015051 hasOpenAccess W2990015051 @default.
- W2990015051 hasPrimaryLocation W29900150511 @default.
- W2990015051 hasRelatedWork W1968980682 @default.
- W2990015051 hasRelatedWork W2071825329 @default.
- W2990015051 hasRelatedWork W2098290658 @default.
- W2990015051 hasRelatedWork W2156114253 @default.
- W2990015051 hasRelatedWork W2950169363 @default.
- W2990015051 hasRelatedWork W31130112 @default.
- W2990015051 hasRelatedWork W3115534942 @default.