Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990059919> ?p ?o ?g. }
- W2990059919 endingPage "88" @default.
- W2990059919 startingPage "72" @default.
- W2990059919 abstract "Interpretation of 3-D scene through LiDAR point clouds has been a hot research topic for decades. To utilize measured points in the scene, assigning unique tags to the points of the scene with labels linking to individual objects plays a crucial role in the analysis process. In this article, we present a supervised classification approach for the semantic labeling of laser scanning points. A novel method for extracting geometric features is proposed, removing redundant and insignificant information in the local neighborhood of the supervoxels. The proposed feature extraction method uses the supervoxel-based local neighborhood instead of points as basic elements, encapsulating the geometric features of local points. Based on the initial classification results, the graph-based optimization is used to spatially smooth the labeling results, based on the graphical model using the perception weighted edges. Benefiting from the graph-based optimization process, our supervised classification method required only a few training datasets. Experiments were carried out by comparing the semantic labeling results with manually generated ground truth datasets. The performance of the proposed methods with different characteristics was analyzed. By using our testing datasets, we have achieved an overall accuracy of better than 0.8 for assigning the measured points to eight semantic classes." @default.
- W2990059919 created "2019-12-05" @default.
- W2990059919 creator A5023786904 @default.
- W2990059919 creator A5032140742 @default.
- W2990059919 creator A5039348214 @default.
- W2990059919 creator A5040430485 @default.
- W2990059919 creator A5053008757 @default.
- W2990059919 creator A5063697410 @default.
- W2990059919 creator A5073808631 @default.
- W2990059919 date "2020-01-01" @default.
- W2990059919 modified "2023-10-14" @default.
- W2990059919 title "Classification of LiDAR Point Clouds Using Supervoxel-Based Detrended Feature and Perception-Weighted Graphical Model" @default.
- W2990059919 cites W1564871316 @default.
- W2990059919 cites W1968200193 @default.
- W2990059919 cites W1972485825 @default.
- W2990059919 cites W1973644502 @default.
- W2990059919 cites W1986522259 @default.
- W2990059919 cites W1988197306 @default.
- W2990059919 cites W2001014393 @default.
- W2990059919 cites W2001563151 @default.
- W2990059919 cites W2002266720 @default.
- W2990059919 cites W2007200979 @default.
- W2990059919 cites W2022394120 @default.
- W2990059919 cites W2025803711 @default.
- W2990059919 cites W2031489346 @default.
- W2990059919 cites W2039602581 @default.
- W2990059919 cites W2041642242 @default.
- W2990059919 cites W2058537106 @default.
- W2990059919 cites W2069127380 @default.
- W2990059919 cites W2071997121 @default.
- W2990059919 cites W2072568123 @default.
- W2990059919 cites W2101309634 @default.
- W2990059919 cites W2103820944 @default.
- W2990059919 cites W2107884096 @default.
- W2990059919 cites W2113137767 @default.
- W2990059919 cites W2129725504 @default.
- W2990059919 cites W2134576786 @default.
- W2990059919 cites W2135249503 @default.
- W2990059919 cites W2142008986 @default.
- W2990059919 cites W2143516773 @default.
- W2990059919 cites W2159793005 @default.
- W2990059919 cites W2160821342 @default.
- W2990059919 cites W2162298841 @default.
- W2990059919 cites W2285948548 @default.
- W2990059919 cites W2395466322 @default.
- W2990059919 cites W2562874528 @default.
- W2990059919 cites W2593771152 @default.
- W2990059919 cites W2594610669 @default.
- W2990059919 cites W2611306656 @default.
- W2990059919 cites W2618534726 @default.
- W2990059919 cites W2620650400 @default.
- W2990059919 cites W2620757719 @default.
- W2990059919 cites W2621083258 @default.
- W2990059919 cites W2793671493 @default.
- W2990059919 cites W2802650148 @default.
- W2990059919 cites W2807381906 @default.
- W2990059919 cites W2904279236 @default.
- W2990059919 cites W2905401975 @default.
- W2990059919 cites W2911964244 @default.
- W2990059919 cites W2927945203 @default.
- W2990059919 cites W2963281829 @default.
- W2990059919 cites W2963706542 @default.
- W2990059919 cites W4235587621 @default.
- W2990059919 doi "https://doi.org/10.1109/jstars.2019.2951293" @default.
- W2990059919 hasPublicationYear "2020" @default.
- W2990059919 type Work @default.
- W2990059919 sameAs 2990059919 @default.
- W2990059919 citedByCount "29" @default.
- W2990059919 countsByYear W29900599192020 @default.
- W2990059919 countsByYear W29900599192021 @default.
- W2990059919 countsByYear W29900599192022 @default.
- W2990059919 countsByYear W29900599192023 @default.
- W2990059919 crossrefType "journal-article" @default.
- W2990059919 hasAuthorship W2990059919A5023786904 @default.
- W2990059919 hasAuthorship W2990059919A5032140742 @default.
- W2990059919 hasAuthorship W2990059919A5039348214 @default.
- W2990059919 hasAuthorship W2990059919A5040430485 @default.
- W2990059919 hasAuthorship W2990059919A5053008757 @default.
- W2990059919 hasAuthorship W2990059919A5063697410 @default.
- W2990059919 hasAuthorship W2990059919A5073808631 @default.
- W2990059919 hasBestOaLocation W29900599191 @default.
- W2990059919 hasConcept C111919701 @default.
- W2990059919 hasConcept C127313418 @default.
- W2990059919 hasConcept C131979681 @default.
- W2990059919 hasConcept C132525143 @default.
- W2990059919 hasConcept C138885662 @default.
- W2990059919 hasConcept C146849305 @default.
- W2990059919 hasConcept C153180895 @default.
- W2990059919 hasConcept C154945302 @default.
- W2990059919 hasConcept C2776401178 @default.
- W2990059919 hasConcept C41008148 @default.
- W2990059919 hasConcept C41895202 @default.
- W2990059919 hasConcept C51399673 @default.
- W2990059919 hasConcept C52622490 @default.
- W2990059919 hasConcept C62649853 @default.
- W2990059919 hasConcept C80444323 @default.
- W2990059919 hasConcept C98045186 @default.
- W2990059919 hasConceptScore W2990059919C111919701 @default.