Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990069629> ?p ?o ?g. }
- W2990069629 endingPage "119026" @default.
- W2990069629 startingPage "119026" @default.
- W2990069629 abstract "A new gaseous hydrocarbon transport model, considering pore geometry, multiphase pore fluid occupancy, and porous deformation, has been developed to characterize the real gas flow in both nanoscale organic and inorganic porous media. To do so, Navier-Stokes equations were solved with modified second-order slip boundary conditions in nanocapillaries of organic matter (OM) and nanoslits of inorganic matrix (iOM). Due to gas adsorption, both surface diffusion and bulk gas flow affect the apparent gas permeability (AGP) of OM. Particularly, the Langmuir-slip model is used for the calculation of boundary velocity of bulk gas. In contrast, gas flow in a single nanoslit of iOM accounts for the impact of adsorbed water film with a certain thickness quantified by Li's model [15]. Additionally, porous deformation and real gas effect are included in both models of OM and iOM. As such, a unified AGP model of shale matrix is formulated based on the total organic carbon (TOC) content including contributions of both OM and iOM. Results show that, under depressurization condition, the AGP of OM/iOM with a large pore size distribution (PSD) presents a similar shape of “V”, while the AGP of iOM with a small PSD increases monotonously. The total flow capacity of OM is contributed by competitive mechanisms of surface diffusion, induced- and pure- bulk gas flow under various PSDs and pressure. For gas flow capacity in iOM with a small PSD, it can be weakened by adsorbed water film but compensated by nanoscale effect considerably at low pressures. Moreover, a higher relative humidity (RH) leads to a thicker water film resulting in a lower gas conductance. The AGP of shale matrix can be reduced or enhanced by the TOC content when accounting for gas adsorption and adsorbed water film. Besides, the real gas effect enhances flow capacity significantly in small pores with a high pressure. The proposed model provides a comprehensive understanding of the gas flow mechanism in shale nanopores under reservoir conditions." @default.
- W2990069629 created "2019-12-05" @default.
- W2990069629 creator A5002897088 @default.
- W2990069629 creator A5020162387 @default.
- W2990069629 creator A5048965425 @default.
- W2990069629 creator A5080711760 @default.
- W2990069629 creator A5080812899 @default.
- W2990069629 creator A5083720606 @default.
- W2990069629 date "2020-02-01" @default.
- W2990069629 modified "2023-10-14" @default.
- W2990069629 title "A new model for the transport of gaseous hydrocarbon in shale nanopores coupling real gas effect, adsorption, and multiphase pore fluid occupancies" @default.
- W2990069629 cites W1547237253 @default.
- W2990069629 cites W1795539325 @default.
- W2990069629 cites W1966799339 @default.
- W2990069629 cites W1981636025 @default.
- W2990069629 cites W1983133073 @default.
- W2990069629 cites W1992088354 @default.
- W2990069629 cites W1992371724 @default.
- W2990069629 cites W1992945611 @default.
- W2990069629 cites W1996460793 @default.
- W2990069629 cites W2006851412 @default.
- W2990069629 cites W2018434255 @default.
- W2990069629 cites W2039493126 @default.
- W2990069629 cites W2053800184 @default.
- W2990069629 cites W2074871021 @default.
- W2990069629 cites W2093445429 @default.
- W2990069629 cites W2134994273 @default.
- W2990069629 cites W2156608310 @default.
- W2990069629 cites W2159501187 @default.
- W2990069629 cites W2173813363 @default.
- W2990069629 cites W2179947482 @default.
- W2990069629 cites W2198488453 @default.
- W2990069629 cites W2267576270 @default.
- W2990069629 cites W2285902904 @default.
- W2990069629 cites W2315083780 @default.
- W2990069629 cites W2318916487 @default.
- W2990069629 cites W2330878997 @default.
- W2990069629 cites W2396650294 @default.
- W2990069629 cites W2520641382 @default.
- W2990069629 cites W2530519841 @default.
- W2990069629 cites W2554138535 @default.
- W2990069629 cites W2571737036 @default.
- W2990069629 cites W2578927485 @default.
- W2990069629 cites W2595933461 @default.
- W2990069629 cites W2608621058 @default.
- W2990069629 cites W2723582278 @default.
- W2990069629 cites W2743186958 @default.
- W2990069629 cites W2747162709 @default.
- W2990069629 cites W2748213614 @default.
- W2990069629 cites W2753812532 @default.
- W2990069629 cites W2761670059 @default.
- W2990069629 cites W2778989380 @default.
- W2990069629 cites W2796337614 @default.
- W2990069629 cites W2804447057 @default.
- W2990069629 cites W2807705243 @default.
- W2990069629 cites W2885630113 @default.
- W2990069629 cites W2889463224 @default.
- W2990069629 cites W2921539440 @default.
- W2990069629 cites W2946512126 @default.
- W2990069629 cites W2955361740 @default.
- W2990069629 cites W595626121 @default.
- W2990069629 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2019.119026" @default.
- W2990069629 hasPublicationYear "2020" @default.
- W2990069629 type Work @default.
- W2990069629 sameAs 2990069629 @default.
- W2990069629 citedByCount "9" @default.
- W2990069629 countsByYear W29900696292020 @default.
- W2990069629 countsByYear W29900696292021 @default.
- W2990069629 countsByYear W29900696292022 @default.
- W2990069629 countsByYear W29900696292023 @default.
- W2990069629 crossrefType "journal-article" @default.
- W2990069629 hasAuthorship W2990069629A5002897088 @default.
- W2990069629 hasAuthorship W2990069629A5020162387 @default.
- W2990069629 hasAuthorship W2990069629A5048965425 @default.
- W2990069629 hasAuthorship W2990069629A5080711760 @default.
- W2990069629 hasAuthorship W2990069629A5080812899 @default.
- W2990069629 hasAuthorship W2990069629A5083720606 @default.
- W2990069629 hasConcept C105569014 @default.
- W2990069629 hasConcept C120882062 @default.
- W2990069629 hasConcept C121332964 @default.
- W2990069629 hasConcept C127413603 @default.
- W2990069629 hasConcept C141795571 @default.
- W2990069629 hasConcept C150394285 @default.
- W2990069629 hasConcept C159985019 @default.
- W2990069629 hasConcept C171250308 @default.
- W2990069629 hasConcept C178790620 @default.
- W2990069629 hasConcept C185592680 @default.
- W2990069629 hasConcept C192562407 @default.
- W2990069629 hasConcept C195268267 @default.
- W2990069629 hasConcept C41625074 @default.
- W2990069629 hasConcept C42360764 @default.
- W2990069629 hasConcept C55493867 @default.
- W2990069629 hasConcept C6648577 @default.
- W2990069629 hasConcept C97355855 @default.
- W2990069629 hasConceptScore W2990069629C105569014 @default.
- W2990069629 hasConceptScore W2990069629C120882062 @default.
- W2990069629 hasConceptScore W2990069629C121332964 @default.
- W2990069629 hasConceptScore W2990069629C127413603 @default.